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The biodiversity of protists, which are key players in many ecosystems, remains understudied, particularly 
in tropical regions. The ciliate Paramecium sexaurelia, a cryptic species within the Paramecium aurelia 
complex, is typically restricted to warm climates. In this study, we examine the genetic variability of 
P. sexaurelia populations collected over three years (2016-2018) from water bodies in the palm houses 
of the Jagiellonian University Botanical Garden in Kraków. These artificial palm-house environments, 
which contain tropical plants, may serve as reservoirs for microbial eukaryotes native to warm climates, 
thereby providing a unique opportunity to study protist diversity outside their native regions. Our molecu-
lar analysis revealed a considerable amount of genetic diversity within these populations, as we detected 
13 distinct COI haplotypes (Pa6COI_02, 07, 14-24). While two haplotypes (Pa6COI_02 and 07) matched 
previously known sequences, the remaining eleven haplotypes (Pa6COI_14-24) were novel to this study, 
demonstrating the unexplored genetic richness of P. sexaurelia, even in artificial habitats. Given the high 
genetic diversity and widespread distribution of the species, these results provide valuable insights into its 
population structure in controlled environments. The presence of P. sexaurelia in a temperate-climate palm 
house suggests possible plant-mediated introductions, raising intriguing questions about the dispersal and 
persistence of tropical protists beyond their native ranges. These findings highlight the often-overlooked 
role of botanical gardens in preserving microbial and eukaryotic diversity, while underscoring the value 
of such artificial habitats as natural laboratories for studying the biodiversity of tropical protists in non-
-native settings.
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Protists, representing the paraphyletic assemblage 
of eukaryotic microorganisms once classified with-
in Whittaker’s (1969) five-kingdom system, play 
a crucial role in the functioning of many ecosystems 
(Perrin & Dorrell 2024; Singer et al. 2021). Despite 
their important ecological roles as primary produc-
ers, predators, decomposers and parasites (Massana 
et al. 2015), microbial eukaryotes are still largely 
underestimated in biodiversity assessments (Burki 

et al. 2021; Del Campo et al. 2014). This is particu-
larly true in tropical regions (Lentendu et al. 2019), 
which are considered to be biodiversity hotspots 
(Myers et al. 2000).

The limited understanding of microbial eukaryote 
biodiversity stems from multiple interconnected fac-
tors. These include the small size of the organisms 
and the fact that some taxa may actually be comprised 
of complexes of cryptic species (Caron et al. 2009), 
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for obtaining valuable protist biodiversity data in-
clude data sharing from high-throughput sequenc-
ing projects (Berry et al. 2021), citizen science ini-
tiatives (Chandler et al. 2017) and capacity-building 
efforts, such as training programmes for field biolo-
gists (Rieder et al. 2024).

An interesting yet often overlooked approach in-
volves sampling water bodies within the palm houses 
and greenhouses of botanical gardens, which often 
function as miniature tropical islands of biodiversity 
in urban areas with colder climates (Kolicka et al. 
2015; Komala & Przyboś 2001). These artificial 
tropical environments, particularly those housing 
Bromeliaceae plants with their water-filled phytotel-
mata, provide habitats for diverse organisms, includ-
ing protists (Dunthorn et al. 2012; Durán-Ramírez 
et al. 2015; Kolicka et al. 2016). Representatives 
of the flagship ciliate genus Paramecium have been 
documented in both phytotelmata (Buosi et al. 2014) 
and palm house ponds (Komala & Przyboś 2001; 
Przyboś et al. 2016), demonstrating the potential of 
these artificial habitats for protist research.

One protist species previously recorded in palm 
house ponds is the ciliate Paramecium sexaurelia 
(Przyboś et al. 2016), one of sixteen cryptic species 
within the Paramecium aurelia complex common-
ly found in tropical regions (Tarcz et al. 2023). Its 
worldwide distribution, though restricted to warm 
climates (Figure 1), may have originated before 
the continental separation, allowing it to achieve 

as well as the difficulty of culturing many species 
(Stepanauskas et al. 2012), the intrinsic complex-
ity of their taxonomy and evolutionary relationships 
(Adl et al. 2019), insufficient reference databases 
(Gelis et al. 2024), and technical challenges in rela-
tion to molecular methodologies (Forster et al. 2019) 
or data accessibility (Paupério et al. 2023). Addition-
ally, biased sampling of the environments (Lehti-
niemi et al. 2022), particularly the undersampling of 
tropical areas (Tarcz et al. 2023), have further com-
pounded these limitations. Each of these factors cre-
ates a bottleneck in our ability to fully catalogue and 
recognise the vast diversity of microbial eukaryotes, 
underscoring the need for continued methodological 
advancements and interdisciplinary research in order 
to comprehensively understand protists’ role in the 
biosphere (Lukeš et al. 2024).

Addressing these challenges requires an integrative ap-
proach combining advanced molecular techniques, 
improved culturing methods, better curation of the 
reference data and comprehensive environmental 
sampling (Clamp & Lynn 2017). However, despite 
the considerable research potential of freshwater 
protist communities (Downing et al. 2006), field col-
lection efforts are often hindered by natural factors, 
geopolitical instability and financial constraints, 
which collectively render comprehensive surveys of 
many water bodies nearly impossible (Tarcz 2024).

Beyond planned expeditions and scientific col-
laborations (Asănică et al. 2024), additional avenues 
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Fig. 1. Geographic distribution of the studied strains of the Paramecium sexaurelia complex. The Equator is marked with a solid line, 
while the Tropics of Cancer and Capricorn are marked with dashed lines. Black circles indicate locations of natural water bodies, while 
blue circles indicate locations of water bodies in botanical gardens located in Stuttgart and Kraków.



ies located within the palm houses of the Jagiellonian 
University Botanical Garden in Kraków. In each wa-
ter body, water samples (50 ml) containing plankton 
and plant debris were collected from four sampling 
points (designated 1-4) that were evenly distributed 
along the shoreline (for details, see Przyboś et al. 
(2016)). Samples were taken from the surface layer 
near the edge of the water body.

This sampling approach allowed for an analysis of 
the species microdistribution at each sampling point, 
reflecting natural species associations at specific lo-
cations and times, as well as seasonal dynamics and 
dominance patterns in the studied habitats. Paramecium 
cells found in the freshly collected material were iso-
lated, either directly or after supplementation with 
a small amount of fresh culture medium. In samples 
where representatives of the Paramecium aurelia 
species complex were detected, up to ten clonal 
strains per sample were established for the purpose 
of species identification. The strains are listed in Ta-
ble S1 (SM.01).

Ident i f icat ion of  es tabl ished s t ra ins  of 
P. sexaurel ia
Sonneborn’s methods (1950, 1970) of cultivating 

and identifying strains were used. Paramecia were 
cultured at 27°C in a medium of dried lettuce in dis-
tilled water, then inoculated with Enterobacter 
aerogenes and supplemented with 0.8 mg/ml 
β-sitosterol (Merck, Darmstadt, Germany). They 
were identified initially by eye under a stereo micro-
scope Nikon SMZ800 as members of the P. aurelia 
species complex. New strains were then identified as 
Paramecium sexaurelia based on a strong conjuga-
tion between the studied strain and the reference 
strain (strain 159 from Puerto Rico) of the species 
(Sonneborn 1975). The standard strain belongs to 
the collection of P. aurelia spp. of the Institute of 
Systematics and Evolution of Animals, Polish 
Academy of Sciences, Kraków, Poland.

Molecular  techniques
Genomic DNA of the Paramecium was isolated 

(approximately 1000 cells were used for the DNA 
extraction) from vegetative cells at the end of the 
exponential phase using the NucleoSpin Tissue 
Kit (Macherey-Nagel, Germany), according to the 
manufacturer’s instructions for DNA isolation from 
human or animal tissue and cultured cells. The only 
modification was a cell culture centrifugation for 
20 min at 13,200 rpm. The supernatant was then re-
moved and the remaining cells were resuspended in 
lysis buffer and proteinase K. The proteinase K buffer 

a global range without an extensive recent migration 
(Johri et al. 2017). However, P. sexaurelia has not 
been documented as naturally occurring in temper-
ate climates, including Poland, despite more than 60 
years of intensive faunistic research beginning in the 
1960 s (Przyboś & Surmacz 2010). Therefore, its pres-
ence in palm house water bodies likely resulted from 
an introduction via tropical plant transport (Przyboś 
et al. 2016). Importantly, P. sexaurelia exhibits a high 
level of genetic variability compared to other species 
in the P. aurelia complex (Przyboś et al. 2010; Tarcz 
et al. 2023), making it a suitable model for studying 
tropical microbial eukaryote biodiversity in artificial 
‘tropical islands’ within cooler climates.

The current survey employs DNA barcode mito-
chondrial COI gene sequencing with the aim to as-
sess both the spatial and temporal genetic variation 
of Paramecium sexaurelia populations collected 
over three years (2016-2018) from two water bod-
ies located in the palm houses of the Jagiellonian 
University Botanical Garden in Krakow. Given the 
occurrence of P. sexaurelia in various regions and its 
potential genetic diversity, examining the population 
variability in these reservoirs, which house plants 
from tropical regions, may provide insights into the 
genetic diversity of the species under different en-
vironmental conditions. Such research may provide 
a foundation for future studies targeting specific ge-
ographic regions.

Materials and Methods

Material
The Paramecium strains studied in the present 

paper, representing the P. aurelia species complex, 
are listed in Supplementary Materials: Tables S1 and 
S2. Newly identified strains were collected from two 
palm-house water bodies in the Botanical Garden 
of the Jagiellonian University, Kraków. The Botani-
cal Garden, established in 1783, is situated east of 
the Old Town and covers an area of 9.6 hectares. 
It contains three ponds and two greenhouses (palm 
houses). The garden has been described in detail in 
Przyboś et al. (2016).

Methods 

Methods of  col lect ing samples  and estab-
l ishing s t ra ins
The material for this study was collected over three 

vegetation seasons (spring, summer and autumn) be-
tween 2016 and 2018, from two artificial water bod-
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MEGA v12 (Kumar et al. 2024). Neighbour-joining 
(NJ), maximum parsimony (MP) and maximum like-
lihood (ML) analyses were performed using MEGA 
v12 by bootstrapping with 1000 replicates. All posi-
tions containing gaps and missing data were elimi-
nated. The MP analysis was evaluated with the min-
min heuristic parameter (at level 2) and bootstrap-
ping with 1000 replicates. An HKY+G+I model for 
mtDNA (G = 2.336, I = 0.535) was identified as the 
best nucleotide substitution model for the maximum 
likelihood tree reconstruction using MEGA v12 soft-
ware. Bayesian inference (BI) was performed using 
MrBayes v3.1.2 (Ronquist & Huelsenbeck 2003); 
the analysis was run for 5,000,000 generations with 
the GTR+G+I model, and the trees were sampled 
every 100 generations. All trees for the BI analysis 
were visualised using TreeView v1.6.6 (Page 1996).

The number of haplotypes (h) and intraspecific 
haplotype diversity (Hd), as well as the nucleotide 
diversity (π), were determined with DnaSP v5.10.01 
(Librado & Rozas 2009). The haplotype network, 
representing the distribution and relationships 
among haplotypes of the Paramecium sexaurelia 
strains, was reconstructed using the Median-Joining 
method (Bandelt et al. 1999) implemented in Pop-
ART v1.7 software (Leigh & Bryant 2015).

Results

Spatial and temporal dynamics of COI haplotype 
diversity in Paramecium sexaurelia strains isolat-
ed from the Kraków Botanical Garden
An intensive, multi-year sampling campaign was 

conducted in the Jagiellonian University Botanical 
Garden in Kraków, Poland, to characterise the ge-
netic diversity of Paramecium sexaurelia. 

Spatially, the haplotype composition differed 
markedly between the water bodies. At the Palm-
House I waterbody, spanning 2016-2018, we identi-
fied 9 haplotypes (Pa6COI_02, 07, 14, 16, 19, 21, 
22, 23, 24), while the Palm-House II waterbody 
yielded 7 haplotypes (Pa6COI_07, 15, 17, 18, 19, 
20, 21). Only three haplotypes (Pa6COI_07, 19, 21) 
were shared by both sites; the others were unique to 
one habitat, with Pa6COI_02, 14, 16, 22-24 found 
only in Palm-House I and Pa6COI_15, 17, 18, 20 
exclusive to Palm-House II.

Temporal patterns also emerged across the study 
period. In 2016 we recovered haplotypes 07, 14, 15; 
while in 2017 we found 02, 07, 16-21; and in 2018 
we observed haplotypes 02, 07, 19, 21-24. Several 
haplotypes, notably Pa6COI_07, 19, and 21, persisted 

step consisted of two parts: pre-lysis sample incu-
bation at 56°C for 3 h; and lysis sample incubation 
at 70°C for 10 min. Protocol details are available 
at https://www.mn-net.com/media/pdf/5b/d0/d9/In-
struction-NucleoSpin-Tissue.pdf. Both the quantity 
and purity of the extracted DNA were evaluated us-
ing a NanoDrop-2000 spectrophotometer (Thermo 
Scientific, Waltham, MA, USA).

Fragments of the COI gene were amplified, se-
quenced and analysed. The COI fragment of mi-
tochondrial DNA was amplified using a pair of 
primers: forward F388dT (5’-TGTAAAACGACG-
GCCAGTGGwkCbAAAGATGTwGC-3’) and re-
verse R1184dT (5’-CAGGAAACAGCTATGAC-
TAdACyTCAGGGTGACCrAAAAATCA-3’), with 
a protocol previously described in Strüder-Kypke & 
Lynn (2010). The amplification cycles were as fol-
lows: 4 min at 94°C, followed by 5 cycles of 94°C 
for 45 s, 45°C for 1 min 15 s, 72°C for 1 min 30 s 
and 30 cycles of 94°C for 45 s, 55°C for 1 min 15 s, 
72°C for 1 min 30 s, and a final extension at 72°C 
for 8 min. The PCR amplification was carried out in 
a final volume of 40 μl containing 30 ng DNA, 1.5 
U Taq polymerase (EURx, Poland), 0.8 μl of 20 μM 
each primer, 10 × PCR buffer, and 0.8 μl of 10 mM 
dNTPs. To assess the quality of the amplification, 
the PCR products were electrophoresed in 1% aga-
rose gel for 30 min at 85 V with a DNA molecular 
weight marker (MassRuler Low Range DNA Lad-
der, Thermo Fisher Scientific, USA).

To purify the PCR products, 5 μl of each prod-
uct was mixed with 2 μl of Exo-BAP Mix (EURx, 
Poland), and subsequently incubated at 37°C for 
15  min, followed by another 15 min at 80°C. Cy-
cle sequencing was performed in both directions us-
ing the BigDye Terminator v3.1 chemistry (Applied 
Biosystems, USA). The forward M13F (5’-TG-
TAAAACGACGGCCAGT-3’) and reverse M13R 
(5’-CAGGAAACAGCTATGAC-3’) primers (Mess-
ing 1983; Strüder-Kypke & Lynn 2010) were used 
for sequencing the COI fragment. Details of the 
sequencing procedure are derived from Tarcz et al. 
(2012). The studied COI sequences are available in 
the NCBI GenBank database (see SM.01. Table S1).

Data  analyses
The sequences were evaluated using Chromas Lite 

v2.1.1 (Technelysium, Australia). The alignment of 
the studied COI mtDNA fragment was constructed 
using BioEdit v7.2.5 software (Hall 1999) and was 
checked manually. All the sequences obtained were 
unambiguous and were used for further analyses. The 
mean uncorrected p-distances were calculated using 
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Fig. 2. Phylogenetic tree constructed for 83 Paramecium aurelia strains (Paramecium caudatum and Paramecium multimicronucleatum 
species were used as outgroups). All the strains are listed in Tables S1-S2 (SM.01., SM.02.) The tree was built based on the mitochon-
drial COI fragment using the maximum likelihood (ML). Bootstrap values for neighbour-joining (NJ), maximum parsimony (MP), 
maximum likelihood (ML) and posterior probabilities for the Bayesian inference (BI) are presented. Bootstrap values lower than 50% 
(posterior probabilities <0.50) are not shown. Dashes represent no bootstrap or posterior probability value at a given node. All positions 
containing gaps and missing data were eliminated. The phylogenetic analyses were conducted using MEGA v12 (NJ/MP/ML) and 
MrBayes 3.1.2 (BI). The analysis involved 85 nucleotide sequences. There was a total of 641 positions included in the final dataset.
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The phylogenetic analyses placed all P. sexaurelia 
strains within a single, well-supported monophy-
letic clade of the P. aurelia species complex, with 
high bootstrap values supporting the base of the 
clade (Figure 3). However, the internal relationships 
among haplotypes remained largely unresolved, 
with many nodes receiving low statistical support. 
Despite this, the species can be subdivided into at 
least three genetically distinct lineages (designated 
here as A, B and C), corresponding to major haplo-
type clusters observed in both the phylogenetic tree 
and haplotype network (Figs 2-4).

Haplotype network structure and biogeographic 
patterns in Paramecium sexaurelia
The haplotype network of P. sexaurelia reveals 

24 distinct COI haplotypes, reflecting a high level of 
intraspecific genetic diversity and a complex evolu-
tionary structure. Three major genetic groups (A, B, 
C) emerged from the network analysis, which is con-
sistent with previous phylogenetic findings. All the 
COI sequences obtained in the current study, as well 
as those remaining from the Botanical Garden, be-
longed to haplogroup A (Figure 4). The Pa6COI_07 
haplotype is comprised of 18 sequences primar-
ily from the Kraków Botanical Garden, along with 
representatives from Thailand (HH2.1). This group 
occupies a central and a highly connected position 

across multiple years, whereas others appeared only 
in a single year; for example, Pa6COI_14 and 15 
were detected only in 2016, while Pa6COI_22-24 
appeared only in 2018. 

In summary, the multi-year sampling effort in the 
Kraków Botanical Garden revealed a stable, domi-
nant resident population (Pa6COI_07) coexisting 
with a surprisingly large number of rare haplotypes. 
It also confirmed the presence of a stable, non-native 
haplotype (Pa6COI_02), previously identified in 
Thailand (see SM.01 Table S1), highlighting the Bo-
tanical Garden’s role as a ‘melting pot’ for microbial 
diversity. 

Intraspecific COI diversity and phylogenetic struc-
ture of Paramecium sexaurelia
Based on 55 COI sequences representing 24 COI 

haplotypes, including 11 newly identified in this 
study, P. sexaurelia exhibits substantial intraspecific 
genetic diversity. The haplotype diversity (Hd) is 
high (0.8781), and it seems to be high on a glob-
al scale. Pairwise p-distances ranged from 0.000 
to a  maximum of 0.143, observed between strains 
A126_ISEA.PAS (Pa6COI_01) and A567_ISEA.
PAS (Pa6COI_09). These findings confirm a broad 
range of mitochondrial COI divergence within the 
species (SM.03. Table S3). 

Fig. 3. Haplotype network of the Paramecium sexaurelia constructed using 55 mitochondrial COI gene sequences. All the strains are 
listed in Table S1. The network presents interrelationships between P. sexaurelia COI haplotypes concerning their geographical origin. 
The different colours indicate the corresponding zoogeographical regions. Hatch marks on individual branches represent nucleotide 
substitutions (the corresponding number is provided for more than 10 substitutions). The analyses were conducted using the median 
joining method in PopART software v. 1.7.
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ture and are often connected to central haplotypes 
such as Pa6COI_02 or Pa6COI_07 by single muta-
tional steps. 

The geographic distribution patterns reveal both 
widespread and geographically restricted haplo-
types. Conversely, certain haplotypes show a pro-
nounced geographic restriction, exemplified by 
Pa6COI_09-11 from the Afrotropical region 
and Pa6COI_14-24 from the Kraków Botanical 
Garden. This geographic structuring suggests that 
the P. sexaurelia diversity reflects a complex inter-
play of ancient dispersal events, regionally persistent 
lineages and ongoing local evolutionary processes. 

Discussion

Paramecium sexaurelia: an example of a microeu-
karyote gateway to tropical biodiversity
Genetic diversity serves as a fundamental driver of 

the adaptation of species to environmental change. 
Its erosion poses critical threats to an ecosystem’s 
resilience and functionality. Recent studies have 
documented substantial reductions in diversity 
across multiple taxa (Shaw et al. 2025). These find-
ings raise serious concerns about the stability of eco-

within the network, suggesting it may represent ei-
ther an ancestral lineage or a particularly success-
ful evolutionary variant with a broad geographic 
distribution. The centrality of this group implies its 
potential role as a hub for subsequent diversifica-
tion events within haplogroup A. The Pa6COI_02 
haplotype forms a distinct cluster that includes 
strains from both Thailand and the Botanical Garden 
Kraków (BG14, A713, A723, A724), positioned at 
a considerable genetic distance from Pa6COI_07. 
This separation by multiple mutational steps sup-
ports its interpretation as a divergent lineage that 
has undergone independent evolutionary trajecto-
ries. In contrast, the Pa6COI_06, 10, 12 cluster oc-
cupies a more peripheral position and is comprised 
of haplotypes from geographically diverse regions, 
including Greece, Germany, Madagascar, Russia, 
Spain, Thailand and Hawaii. This group maintains a 
clear genetic separation from Pa6COI_07 while dis-
playing internal connectivity among its constituent 
members, suggesting a distinct evolutionary history 
with a subsequent geographic dispersal (Figure 3).

A particularly noteworthy feature of the network is 
the presence of eleven newly described haplotypes 
(Pa6COI_14 - Pa6COI_24) identified in this study 
from the Kraków Botanical Garden. These novel 
variants are dispersed throughout the network struc-

Fig. 4. Haplotype network of the Paramecium sexaurelia constructed using 55 mitochondrial COI gene sequences. All the strains are 
listed in Table S1. The network presents a comparison of haplotypes obtained in the current study (light green) vs the other localities 
(grey), where molecular data for particular P. sexaurelia strains were available. Hatch marks on individual branches represent nucleoti-
de substitutions (the corresponding number is provided for more than 10 substitutions). The analyses were conducted using the median 
joining method in PopART software v. 1.7.
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distributions and predicting ecosystem responses. 
Machine learning algorithms can process massive 
image-based or sequence-based datasets (Miller 
et  al. 2025; Pollock et al. 2025; Reynolds et al. 
2025). However, a major limitation remains: most 
current AI classifiers are trained on temperate-region 
datasets. They fail to generalise effectively to the hy-
perdiverse and often unique communities found in 
tropical ecosystems. This creates an urgent need for 
region-specific training datasets and algorithms that 
are optimised for tropical protist diversity.

A promising solution involves leveraging well-
studied model organisms that are both widely dis-
tributed and genetically diverse. The species studied 
here, Paramecium sexaurelia, represents such a can-
didate as a well-characterised ciliate species within 
the P. aurelia complex that has long served as a mod-
el in microbial eukaryotic genetics. This organism 
provides insights into cryptic speciation, genome re-
arrangement, cytoplasmic inheritance and endosym-
biosis (Van Houten 2023). It exhibits a high degree of 
intraspecific genetic variability and wide geographic 
distribution in the tropics that largely overlaps with 
Myers’ biodiversity hotspots (Figure 1) (Przyboś & 
Prajer 2015; Tarcz et al. 2023). Given its distinctive 
phylogeographic profile (Figure  3) and established 
model organism status, P. sexaurelia is uniquely po-
sitioned to serve as a benchmark species for devel-
oping and validating eDNA and AI-based biodiver-
sity assessment tools. Its presence in tropical regions 
enhances its value as an ecological indicator that is 
capable of reflecting changes in the microbial com-
munity structure and ecosystem health. Furthermore, 
its well-characterised genomic data makes it ideal 
for the future training of AI models in species iden-
tification and predictive ecological modelling. This 
integration could ultimately bridge the gap between 
data-rich technological advances and data-poor bio-
diversity regions, thereby advancing our understand-
ing and preservation of global biodiversity before it 
disappears unnoticed.

Artifcial ponds in greenhouses as potential biodi-
versity reservoirs for microeukaryotes
Understanding tropical protist biodiversity pre-

sents significant challenges, particularly when broad 
environmental DNA (eDNA) surveys may gener-
ate overwhelming amounts of data that obscure the 
resolution of individual, often cryptic species (Tarcz 
2024). A more practical approach focuses on well-
characterised model taxa that can serve as biodiver-
sity indicators. Studies of the Paramecium aurelia 
complex have successfully employed specific mark-
er genes in order to track species distributions and 

logical networks. While biodiversity loss has been 
extensively examined in well-characterised groups 
such as plants, animals and fungi, microbial eukary-
otes, particularly protists, are experiencing equally 
alarming levels of decline. These declines remain 
poorly documented due to insufficient taxonomic 
resolution, limited sampling efforts and the persis-
tent Linnean Shortfall – the discrepancy between 
described and actual species. This problem is com-
pounded by the Taxonomic Impediment, which re-
flects shortages in taxonomic expertise and resources 
(de Araujo et al. 2018; Emerson 2025; Wiens 2023).

Protists play pivotal roles in nutrient cycling, food 
web dynamics and ecosystem regulation. They re-
main paradoxically among the least understood eu-
karyotic groups, despite their ecological importance. 
Although they have a relatively low number of for-
mally described species, molecular surveys have 
consistently revealed extensive cryptic diversity 
(Stern et al. 2018). This suggests that their true rich-
ness may rival that of better-known multicellular lin-
eages. To help mitigate these limitations, researchers 
have increasingly advocated for spatially explicit 
approaches. These have focused on biodiversity 
hotspots, which are geographic regions harbouring 
exceptional species richness while simultaneously 
facing imminent threats (Myers et al. 2000). Many 
of these hotspots strikingly coincide with areas of 
high protist diversity, particularly in tropical ecosys-
tems globally recognised as epicentres of microbial 
eukaryotic richness (Bass & Cavalier-Smith 2004; 
Foissner 2006).

Environmental DNA (eDNA) metabarcoding has 
emerged as a transformative methodology for as-
sessing microbial diversity. This approach, which 
operates in a non-invasive and high-throughput 
manner, is proving to be especially powerful in trop-
ical regions where logistical and taxonomic chal-
lenges hinder traditional sampling techniques. The 
technique enables the detection of hundreds to thou-
sands of operational taxonomic units from single 
soil or water samples. It reveals orders of magnitude 
of greater diversity than conventional morphological 
studies (Bik et al. 2012; Burki et al. 2021; de Vargas 
et al. 2015; Mahé et al. 2017; Pawlowski et al. 2016).

With the growing accumulation of eDNA and 
metagenomic datasets, the challenge has shifted 
from data generation to data interpretation (Karlicki 
et al. 2022). This transition is opening new avenues 
for artificial intelligence applications that are in-
creasingly being recognised as key tools for address-
ing biodiversity shortfalls. AI offers a promise for 
automating species identification, modelling species 
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The spatial and temporal patterns observed in these 
greenhouse ponds provide crucial insights into the 
biogeographical processes that shape protistan di-
versity in natural tropical ecosystems. Despite their 
physical proximity, each water body maintained 
unique haplotype compositions, with Pond I con-
taining 10 haplotypes and Pond II harbouring only 7. 
This suggests that fine-scale habitat differences can 
maintain genetically distinct populations. This pat-
tern of genetic differentiation between neighbouring 
artificial habitats mirrors what might be expected in 
natural tropical water bodies, where environmental 
heterogeneity could drive even greater diversifica-
tion. Therefore, the greenhouse study provides both 
a methodological framework and a compelling ra-
tionale for expanded biodiversity surveys in the 
world’s tropical regions, where the true extent of 
protistan diversity awaits discovery.

Conclusions 

The current survey demonstrates that Paramecium 
sexaurelia serves as an exceptional model organ-
ism for understanding tropical protist biodiversity 
patterns. The comprehensive analysis of artificial 
greenhouse ponds at the Jagiellonian University 
Botanical Garden revealed a remarkable amount of 
genetic diversity, with 28 strains representing 13 COI 
haplotypes, 11 of which were newly identified. 

These findings underscore the urgent need for 
region-specific biodiversity assessment tools, particu-
larly as current AI-based classification systems remain 
biased toward temperate datasets. P. sexaurelia’s well-
characterised genetics, wide tropical distribution and 
overlap with Myers’ biodiversity hotspots position it 
as an ideal benchmark species for developing eDNA 
and machine learning applications that are tailored 
to tropical ecosystems.

These results emphasise that even small, human-
created habitats can maintain significant protist 
diversity, while offering accessible windows into 
tropical biodiversity patterns that would otherwise 
remain hidden in remote natural habitats.
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