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In this study, the effects of Genomic Best Linear Unbiased Prediction (GBLUP) and Bayesian alphabet 
methods (A, B, C and Cp) were investigated on genomic predictions and indirect estimations in the Polish 
Holstein Friesian (PHF) dairy cattle population. The study analysed the milk yield data (MY, kg/lactation) 
and 13,481 single nucleotide polymorphism (SNP) genotype records from 534 Polish Holstein Friesian 
(PHF) dairy cattle raised on private farms in Poland. The quality control of the genotypic data included the 
removal of monomorphic loci and the exclusion of samples with SNP missing rates exceeding 10%. After 
the quality control, 493 animals and 13,250 SNPs were retained for the genomic prediction. Marker effects 
and genomic breeding values (GEBVs) were calculated using the Bayesian alphabet and GBLUP. The re-
sults indicated that, for the milk yield of PHF cows, the Bayes C method outperformed other approaches. 
This method achieved the highest prediction accuracy among the evaluated methods. Additionally, the 
Bayes C method required the shortest computational time, underscoring its efficiency.
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Increasing the production and quality of animal-
derived foods, which play a critical role in human 
nutrition, requires improvements in both the envi-
ronmental conditions and genetic structures of farm 
animals (Abaci & Önder 2020). The primary goal 
of animal breeding is to increase the frequency of 
the desired alleles of genes associated with econom-
ically important traits in subsequent generations, 
thereby enabling farm animals to supply higher and 
better-quality production under controlled environ-
mental conditions (Olfaz et al. 2019). Traditional 
animal breeding methods have been successfully 

used to estimate genetic parameters based on pedi-
gree information. Unlike traditional animal breeding 
methods, advanced methods allow for a more accu-
rate estimation of breeding values by incorporating 
variations in DNA sequences (Goddard & Hayes 
2007). The Marker-Assisted Selection (MAS) has 
been a pioneering approach in integrating genomic 
information into breeding programmes and was first 
applied to dairy cattle in the 1980s. Its main benefit 
has been the extensive use of young bulls, based on 
combined pedigree and marker information. Since 
the early 21st century, many studies have employed 
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for selection, it is essential to achieve the highest 
possible accuracy in the estimation of these breeding 
values (Brito et al. 2021).

Different statistical approaches using marker ef-
fects, including linear mixed models and Bayesian 
mixture models, have been applied in order to evaluate 
GEBVs. These methods, as described by Meuwissen 
et al. (2001), have been instrumental in assessing the 
accuracy and performance of GP estimations (Taylor 
et al. 2016). The advent of medium-density or high-
density SNP chips (containing >50,000 markers and 
higher) in 2008 marked a turning point for genomic 
selection. This technology has since been success-
fully implemented in many countries. In nations 
with high milk production levels, the application of 
breeding selection based on GEBVs has brought 
about transformative advancements in the dairy in-
dustry (Hayes et al. 2009).  

In Poland, Holstein Friesian cattle constitute the 
dominant dairy breed, contributing significantly to 
the national milk production. Implementing genomic 
selection in Poland has the potential to improve the 
genetic progress, increase the selection accuracy and 
enhance economically important traits, such as the 
milk yield, fertility, and udder health. In this study, 
we decided to utilise SNP data that breeders have 
already genotyped, to ensure that our findings are di-
rectly applicable to ongoing breeding programmes 
without requiring additional costly genotyping ef-
forts. 

The aim of the study is to evaluate the effects of 
Genomic Best Linear Unbiased Prediction (GBLUP) 
and Bayesian alphabet methods (A, B, C and Cp) 
on single-step genomic predictions and indirect es-
timations in the Polish Holstein Friesian dairy cattle 
population.

Material and Methods 

As per Resolution No. 13/2016 of the National 
Ethics Committee for Animal Experiments (Poland) 
dated 17 June 2016, ethical approval was not re-
quired in order to collect the animal material for 
genotyping (Approval No: 13/2016). 

Materials
The genetic material used for the study was col-

lected during a routine estimation of breeding val-
ues. The genotyping was conducted by the Polish 
Federation of Cattle Breeders and Dairy Farmers 
(PFCB&DF, Warsaw, Poland) using customised 
EuroGenomics microarrays: EuroGenomics v3_POL; 
EuroGenomics v4_POL; EuroGenomics v5_POL; 

this method, especially in relation to dairy cattle 
breeding (Weller et al. 2017). With this approach, 
selection decisions are made based on a small num-
ber of markers that are individually associated with 
the target traits. 

The markers used for MAS can be linked to the 
QTL, but in linkage equilibrium with it; while in 
linkage disequilibrium (LD), the QTL or the marker 
can be the QTL (Dekkers 2004). If the marker is in 
linkage equilibrium with the QTL. All QTL alleles 
in the founder animals are considered to be differ-
ent and hence the number of QTL alleles whose ef-
fects must be estimated is further increased. Despite 
these difficulties, Boichard et al. (2012) showed how 
gains can be made, although a very large amount of 
genotyping was necessary. To overcome these dif-
ficulties, Meuwissen et al. (2001) proposed a variant 
of MAS that they called genomic selection. The key 
features of this method are that markers covering the 
whole genome are used, so that potentially all the 
genetic variance is explained by the markers. Fur-
thermore, the markers are assumed to be in LD with 
the QTL, so that the number of effects per QTL to be 
estimated is small. Using simulations, they showed 
that the breeding value could be predicted with an 
accuracy of 0.85 from marker data sequences alone 
(Goddard & Hayes 2007). Therefore, the selection 
of animals for breeding can now be based on the cu-
mulative effects of all markers across the genome 
(Meuwissen et al. 2001; De Koning et al. 2016).

Genomic selection (GS) has significantly trans-
formed animal breeding activities. Unlike traditional 
breeding methods, GS is used to estimate the genetic 
breeding values of all animals with known geno-
types, even before their phenotypes have been meas-
ured, by utilising marker effect coefficients (Ding 
et al. 2013). In contrast to GS, which relies on a lim-
ited number of markers, the calculation of Genom-
ic Estimated Breeding Values (GEBVs) involves the 
genomic prediction (GP) of additive genetic traits of the 
animals under consideration for selection (Taylor et al. 
2016; Abaci & Önder 2020). The genomic breed-
ing value can be obtained through two approaches: 
direct and indirect. In the direct method, genomic 
breeding values are estimated in a single step using 
mixed equation models for individuals with known 
phenotypes and genotypes. In the indirect method, 
there are two steps. In the first step, marker effects 
are estimated using a training population. In the 
second step, breeding value estimates are obtained 
using only marker effects for the genotyped popula-
tion and the population under selection (Calus et al. 
2008; Hayes et al. 2009). To shorten the generation 
interval and to evaluate a large number of candidates 
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The mathematical model of the marker-based 
methods with polygenic effects was used as follows 
(Abaci & Önder 2020):

y = μ1n + Xs + Cβ + ΣjWj αj δj + Zu = e (2)

Where: y is an N×1 vector of the phenotypes where 
N is the number of individuals, μ is the overall mean, 
1n is a vector of ones, X is an incidence matrix for 
constant effects (order of lactation), s is a constant 
effects vector, C is a covariate design matrix, β is an 
effect vector of a covariate, Wj is an N×1 vector of 
the genotypes at SNP j which was coded (10, 0, -10), 
αj is the random allele substitution effect for SNP j, 
δj is a 0/1 indicator variable which equals 1 if SNP j 
is included in the model and zero otherwise, Z is the 
associated design matrix, u is a vector with random 
polygenic effects of all the individuals with Var(u) = 
Aδ2

u  (A is the numerator relationship matrix and δ2
u   is 

the polygenic variance), and e is a vector of the ran-
dom residuals e ~ N (0, Iδ2

e ), where I is the identity 
matrix and δ2

e  is the random error variance.

Bayes A Method
With Bayes A, it is assumed that most SNPs have 

a minor individual effects on the trait, while only 
a few exhibit a moderate to high impact. The prior 
distribution of marker variance follows a scaled in-
verted chi-square distribution χ-2 (v, S), where S is the 
scale parameter and v is the number of the degree of 
freedom. The prior distribution of the marker sub-
stitution effect (αj) is assumed to be normal, with a 
mean of zero and a variance of δ2

α   j. To fit all markers 
into the model, all δj are set as 1. The marginal SNP 
distribution follows the Student’s t-distribution, al-
lowing for a higher probability of moderate to large 
SNP effects compared to a normal distribution and 
pi=0 (Meuwissen et al. 2001; Hayes et al. 2009; 
Abaci & Önder 2020). 

 Bayes B Method
The distribution of genetic variances across loci 

shows that only a few loci exhibited genetic vari-
ance, while many loci showed none. However, the 
prior density of the Bayes A method lacked a density 
peak at δ2

g   j = 0, where its probability is infinitesimal. 
Method Bayes B, therefore, uses a prior distribution 
with a high density π at δ2

 αj = 0 and has an inverted 
chi-square distribution for δ2

α   j > 0 (Meuwissen et al. 
2001; Abaci & Önder 2020). 

EuroGenomics v6_POL; EuroGenomics v8b_POL; 
and EuroGenomics MD_POL, following the In-
finium HD Illumina protocol. Over time, multiple 
microarray chips were employed, each differing in 
the number and composition of the included SNPs. 
To ensure consistency, a selection of SNPs was 
performed. The dataset included milk yield data 
(MY, kg/lactation) purchased from PFCB&DF and 
13,481 SNP genotype records from 534 Polish Hol-
stein Friesian (PHF) dairy cattle reared by private 
enterprises in Poland. In the quality control process for 
the genotype data, SNPs with a minor allele frequency 
(MAF) of at least 5% were retained, while animals 
with more than 10% missing SNPs were excluded from 
the analysis. Following the quality control, 493 animals 
and 13,250 SNPs were used for the genomic predic-
tions (Lee et al. 2019; Kudinov et al. 2022). 

Methods
For the predictions, the Markov chain and Monte 

Carlo were employed, running for 50,000 iterations 
of Gibbs sampling. Convergence was successfully 
achieved, with the first 5,000 cycles discarded as burn-in 
and excluded from the analysis (Abaci & Önder 2020).

Out of 493 animals, 400 were randomly allocated 
to the training population, while the remaining 93 
comprised the test population. The lactation order 
(OL, categorised as 1, 2 and 3) was used as a fixed 
factor and the days in milk (DIM) as a random fac-
tor. All the data was collected from the same year 
and the herd effect was statistically not significant 
(p>0.05) As a result, it was removed from the final 
model to avoid unnecessary complexity.

The use of Bayesian methods for animal breed-
ing was first introduced by Gianola and Fernando 
(1986). Marker effects and genomic breeding values 
were calculated using the Bayesian alphabet meth-
ods and GBLUP (Bayes C0), following the model 
presented by Meuwissen et al. (Gianola et al. 2009).   

y = Xs + Cβ + Wα + e (1)

Where: y is a vector of the phenotypes, X is the 
incidence matrix for fixed effects, s is the vector of 
fixed effects, C is the covariate design matrix, β is 
the vector of covariate effect, W is a known matrix 
of the numerical genotype scores for each marker 
(AA, AB, and BB for 10, 0, and -10, respectively), α 
is a marker for the additive effects vector and e is a 
random error vector with e~ N (0, Iδ2

e ), where I is the 
identity matrix and δ2

e  is the random error variance.
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tion, k is the total number of markers (13,250), zij is 
the genotype of an individual i for marker j, and ᾱj is 
the posterior mean effect of marker j. 

Due to the significant influence of prior values 
for residual and genetic variances on the results of 
Bayes A, the results from Bayes C were used as the 
prior values for Bayes A.

The theoretical accuracy (R2) was calculated using 
the formula (1-(PEV/δ2

u )), where PEV is the predic-
tion error variance and δ2

u  is the polygenic variance. 
For the calculation of the PEV, the method sug-
gested by Wang et al. (2015) was used. The predic-
tion accuracy was evaluated using the linear regres-
sion (LR) and Pearson correlation methods (Abaci 
& Önder 2020; Cesarani et al. 2021; Mancin et al. 
2021). To compare the correlation coefficients and 
the regression coefficients, Fisher’s z-test was used 
(Werts et al. 1976). The Bayesian methods (Bayes 
A, Bayes B, Bayes C, Bayes Cπ and Bayes C0 (GB-
LUP)) were implemented using the online GenSel 
package in the Cy-Verse cyberinfrastructure, within 
the Discovery Environment web interface (https://
de.cyverse.org/). 

Results

Table 1 presents the descriptive statistics for the 
milk yield (MY, kg/lactation) based on the lactation 
number (LN) with the days in milk (DIM) as a co-
variate. The analysis of variance showed that the LN 
had a statistically significant (p < 0.01) effect on the 
milk yield with a covariate DIM correction. Days in 
milk had a statistically significant (p < 0.01) impact 
on the MY, similarly to when the lactation order (1, 
2 and 3) was used as a fixed factor and the days in 
milk as a random factor in the genomic prediction 
analysis.

Bayes C Method
A general consensus reveals that the full-con-

ditional posterior distribution of a locus-specific 
variance adds only one to the degrees of freedom 
in Bayes A and Bayes B, when compared with its 
prior assumption, while in Bayes Cπ it increases the 
value by the number of markers that have effects in 
each iteration (Zhu et al. 2016), so the shrinkage of 
SNP effects largely depends on the scale parameter. 
To overcome this limitation, the proposed method is 
Bayes C, which involves estimating a single vari-
ance common to all SNPs, thereby reducing the in-
fluence of the scale parameter. In Bayes C, π is as-
sumed to be known and specified by the user (Abaci 
& Önder 2020).

Bayes Cp Method
The Bayes Cp method assumes a mixture model 

for marker effects, where the elements of the Xs vec-
tor were calculated for each animal using the follow-
ing formula:

                                            N

                   Xs = Σ( αj δj Ij)   (3)
                                           i=1

Where: αj is the genotype of the jth marker, j is the 
effect of the jth marker, and Ij is the indicator variable. 
Unlike Bayes C, an additional feature of Bayesian 
Cp is a prior distribution assigned to π (Neves et al. 
2012; Abaci & Önder 2020).

GBLUP Method
The Genomic Best Linear Unbiased Prediction 

(GBLUP) method fits the model using all SNPs and 
assumes that each SNP contributes equally to the 
total genetic variance. This method is equivalent 
to Bayes C when Pi = 0 and, to simplify matters, is 
called Bayes C0 (Abaci & Önder 2020).

Accuracy
For an indirect prediction, marker effects were 

determined by using phenotypic and genotypic re-
cordings from 400 animals (training population), to 
determine the accuracy of the examined methods for 
predicting the genomic breeding value. Subsequent-
ly, estimated genomic breeding values for the test 
population, consisting of 93 animals, were calculat-
ed using only genotypic data (Abaci & Önder 2020). 
The GEBVs of the individuals in the test population 
were predicted using the following formula:

                                                           k

                      GEBV = Σzijᾱj   (4)
                                                          j=1

where: GEBV is the genomic estimated breeding 
value for an individual animal i in the test popula-

Table 1

Descriptive statistics of the milk yield 
(MY, kg/lactation) according to the lac-
tation number (LN)

Lactation 
 number

Milk yield  
(kg)*

1 13,130.61 ± 116.96b

2 15,311.05 ± 231.20a

3 15,174.06 ± 269.64a

Significance <0.001

*: Covariates appearing in the model are evaluated at the values 
of the days in milk (DIM) = 369.6077; a,b: in the columns, va-
lues marked with different letters show the statistical difference 
(P<0.01).
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highest positive correlation (1.000). However, the 
correlation between the milk yield (MY, kg/lacta-
tion) and all estimation methods was low (Table 3).

The accuracy (r) and deviations (b) of the different 
methods were calculated and are presented in Table 4. 
There were no statistical differences obtained for 
the accuracy and deviations among the models. The 
highest accuracy (correlation) between the breeding 
values was obtained from the Bayes C method and 
MY, while the lowest accuracy value was observed 
for the GBLUP method. While the highest deviation 
was calculated for GBLUP, the lowest deviation was 
observed for Bayes A. The results indicate that the 
Bayes C method demonstrated the best accuracy for 
estimating breeding values (Table 4).

Table 2 presents the residual variance, genetic 
variance, heritability and computation time, Pi value 
and the theoretical accuracy R2 (for the direct pre-
diction) related to the genetic parameters obtained 
using different methods.

The Bayes A method provided the highest herit-
ability estimate, while GBLUP gave the lowest her-
itability. The computing times per model ranged be-
tween 391 seconds for Bayes C and 1,914 seconds 
for Bayes B. The highest genetic variance was ob-
served for Bayes A, whereas GBLUP showed the 
lowest genetic variance. The highest coefficient of 
the determination value for a single-step prediction 
was achieved using Bayes, with the lowest observed 
for GBLUP.

It was observed that the breeding values obtained 
by GBLUP and Bayes Cπ methods (Table 3) had the 

Table 2

Results of the variance components
Bayes A Bayes B Bayes C Bayes Cπ GBLUP

Residual Variance 2,377,380 2,451,950 2,331,910 2,323,240 2,420,610

Genetic Variance 2,847,840 2,747,280 2,773,180 2,786,310 2,668,390

Heritability 0.55 0.53 0.54 0.55 0.52

Computing time (sec) 1352 1914 391 788 1081

π 0.00 0.95 0.95 0.53 0.00

R2 0.62 0.62 0.62 0.62 0.61

Table 3

Correlations between the breeding values calculated using different methods
Methods Bayes B Bayes C Bayes Cπ GBLUP MY

Bayes A 0.994 0.999 1.000 1.000 0.638

Bayes B 0.997 0.993 0.992 0.632

Bayes C 0.999 0.998 0.640

Bayes Cπ 1.000 0.641

GBLUP 0.636

MY: Milk yield

Table 4

Accuracy and deviations of the different methods, with standard error values in parentheses 
Methods Accuracy Deviations

Bayes A 0.905 (0.034) 1.596 (0.085)

Bayes B 0.899 (0.035) 1.60 (0.090)

Bayes C 0.908 (0.035) 1.61 (0.089)

Bayes Cπ 0.906 (0.035) 1.61 (0.089)

GBLUP 0.895 (0.035) 1.64 (0.093)
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mon SNPs were used. Additionally, it may indicate 
evidence of a weak selection pressure being applied 
to the population.

Reliability (R2) has been observed at the levels 
of 0.42 and 0.61 (training: 80%) using Bayes C 
by Kudinov et al. (2021, 2022), 0.67 using GBLUP 
(training: 78%) by Sanchez et al. (2022), 0.17 us-
ing ssGBLUP by Lee et al. (2019) and 0.35 using 
GBLUP (training: 80%) by Ma et al. (2015). The lit-
erature shows that the reliability of the estimations 
ranges from 0.17 to 0.67. The results of our study 
showed reliability values between 0.6108 and 0.6240 
(training: 81%), which are aligned with the data re-
ported in the literature on single-step prediction 
methods. These differences cannot be attributed to 
the training set percentage, as Fernández-González 
et al. (2023) mentioned that regarding the optimal 
training set size, the maximum accuracy was ob-
tained when the training set was the entire candidate 
set. They pointed out that 50-55% of the candidate 
set was enough to reach 95-100% of the maximum 
accuracy in the targeted scenario. These differences 
might have occurred due to SNP variance.

In our study, the accuracy was reported at the 
level of 0.895 for GBLUP and 0.908 for Bayes C. 
Comparatively, Lee et al. (2019) found 0.35, Ding 
et al. (2013) reported 0.36 and Cesarani et al. (2021) 
estimated the accuracy for Italian Buffalo at 0.82. 
Mancin et al. (2021) estimated an accuracy of 0.653 
using GBLUP. Boichard et al. (2012) predicted a re-
liability of 0.56 for French Holstein, Montbéliarde 
and Normande breeds. Ding et al. (2013) estimated 
reliability values as 0.72 using Bayes B and as 0.76 
using GBLUP. Meuwissen et al. (2001) reported 
accuracies of 0.732 using Bayes A and 0.848 using 
Bayes B; whereas Mucha et al. (2019) reported an 
accuracy of 0.72.

Lee et al. (2019) reported that the mean accuracy 
of the direct genomic values for milk production 
traits was comparable between Bayes B and GBLUP 
methods. Similarly, Mancin et al. (2021) indicated 

The highest Pearson correlation of the marker ef-
fects was estimated between Bayes Cπ and GBLUP, 
while the lowest was between Bayes B and GBLUP. 
The highest Spearman rank correlation of the marker 
effects was found between Bayes Cπ and GBLUP, 
while the lowest correlation was calculated between 
Bayes B and GBLUP (Table 5).

Discussion

When evaluated without considering the breed, 
the heritability estimates for milk yield fall between 
0.19 and 0.45 (Abaci & Önder 2020). Kudinov et al. 
(2022) reported a heritability value of 0.21 for the 
milk yield in Russian dairy cattle. Lee et al. (2019), 
by using GBLUP for the milk yield for Holstein dairy 
cattle, indicated a heritability value of 0.28, while 
Mancin et al. (2021), also using GBLUP, reported 
a value of 0.25 for the Rendena breed. Meuwissen 
et al. (2001) estimated the heritability value at 0.50 
by using Bayes A and Bayes B with simulated data. 
Mucha et al. (2019) reported a 0.33 heritability val-
ue for Holstein dairy cattle. For milk cheese-making 
traits, the heritability value for the Montbéliarde 
breed was estimated at 0.70 (Sanchez et al. 2022). 
Cesarani et al. (2021) reported a heritability value 
of 0.23 for the milk yield in Italian Buffalo. By con-
trast, the heritability values observed in our study 
were higher than those reported in most previous 
studies (0.523 and 0.546). This high heritability may 
be attributed to the structure of the dataset, which in-
cluded 13,481 SNP and demonstrated a high genetic 
variance versus the residual variance. However, this 
cannot be attributed directly to the SNP number. The 
results of Stanton-Geddes et al. (2013) showed that 
the heritability estimates with 250,000 and 25,000 
SNPs were very similar to those obtained with more 
than 5 million SNPs. Conversely, with 2,500 SNPs, 
the heritability values were lower and had a higher 
variance than those with at least 25,000 SNPs. The 
heritability estimates were slightly lower when com-

Table 5

Pearson correlation (upper diagonal) and Spearman rank correlation (lower diagonal) values of 
the different methods for marker effects

Bayes A Bayes B Bayes C Bayes Cπ GBLUP
Bayes A 0.727 0.945 0.991 0.987

Bayes B 0.985 0.854 0.653 0.629
Bayes C 0.995 0.992 0.919 0.902

Bayes Cπ 0.998 0.982 0.994 0.997

GBLUP 0.997 0.981 0.993 0.998
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Polish Holstein Friesian dairy cattle, exhibiting the 
highest reliability and accuracy among the examined 
methods. Moreover, the Bayes C method required 
the shortest computation time. However, Abacı and 
Önder (2020) reported that the Bayes A and Bayes B 
methods were preferred over Bayes C, Bayes Cπ and 
GBUP methods. In theory, Bayes C and Bayes Cπ are 
considered to be more robust than the Bayes A and B 
methods. Furthermore, Bayes A is highly sensitive to 
prior variance values, which can significantly influ-
ence the results (Neves et al. 2012). Many research-
ers have employed the GBLUP method, especially 
for single-step predictions (Boichard et al. 2012; 
Ding et al. 2013; Cesarani et al. 2021; Naserkheil 
et al. 2021; Steyn et al. 2021; Sungkhapreecha et al. 
2021b; Kudinov et al. 2022; Sanchez et al. 2022; 
Önder et al. 2023). Still, our study showed that the 
GBLUP method was the least accurate among those 
tested. In conclusion, our study suggests that the 
Bayes C method is highly suitable for both single-
step genomic predictions and indirect estimations of 
dairy cattle milk yields.

Conclusions

The results of this study can be applied for pre-
dicting the genomic milk yield of dairy cattle. The 
results suggest that the use of GBLUP should be 
replaced with the use of the Bayes C method, even 
though there was no statistical difference among the 
Bayes methods. Bayes C is only marginally more 
accurate than the other methods, and a proper cross-
validation would have shown that this is indeed the 
case because of its statistical properties. However, 
further advancements in genomic prediction meth-
ods are needed, particularly in relation to statistical 
theory and genomic technology, to fully realise the 
potential of genomic selection.
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BGLUP was the model with the best overall result, 
showing a higher accuracy than Phenotypic BLUP 
along with optimal values of the bias and dispersion 
parameters. The findings of our study showed higher 
accuracies compared to most studies in the literature, 
except for the study by Sungkhapreecha et al. (2021), 
who reported higher values. It is also worth noting 
that the year of publication plays a critical role: older 
studies tend to show lower accuracies compared to 
newer ones, which is likely due to improvements in 
the data quality and computational methods.

The deviation, defined as the regression coef-
ficient, was estimated as 0.80 by Kudinov et al. 
(2022) and 0.99 by Kudinov et al. (2021) using the 
GBLUP method. Lee et al. (2019) reported a devia-
tion of 1.75; while Ma et al. (2015), using GBLUP, 
described it as 0.75 for Jersey cattle. Meuwissen 
et al. (2001) indicated that the deviations were 0.827 
for Bayes A and 0.946 for the Bayes B method. Mu-
cha et al. (2019) reported the highest deviation, with 
a value of 3.83. Lee et al. (2019) argued that Bayes 
B tends to show a relatively lower bias compared 
to the GBLUP method for Korean Holstein popu-
lations. Consistent with these findings, our study 
confirmed that the Bayes methods generally demon-
strate a smaller bias than the GBLUP method. 

When the correlations between the breeding values 
estimated using different methods were analysed, 
the highest correlation was observed between the 
milk yield and Bayes Cπ (0.641), while the lowest 
correlation (0.636) was between the true milk yield 
and the GBLUP method. The correlations among the 
evaluated methods were generally high and positive. 
The correlations of the marker effects were further 
analysed in this study using the Pearson correlation, 
while the ranking of the marker effects was evaluat-
ed using the Spearman rank correlation. The lowest 
Pearson correlation coefficient for the marker effect 
value was observed between Bayes B and GBLUP 
(0.629), whereas the highest was between Bayes Cπ 
and GBLUP (0.997). The lowest Spearman rank cor-
relation coefficient for the marker effect rankings 
was observed between Bayes B and GBLUP (0.981), 
while the highest was found between Bayes Cπ and 
GBLUP, as well as between Bayes Cp and Bayes A 
(0.998). The Pearson correlations were lower than 
the Spearman rank correlations, indicating that while 
the marker effect values show lower correlations 
across these methods, the weight of the markers in 
the models is more consistent across these methods.

Our results showed that the Bayes C method was 
the most effective for single-step genomic predic-
tions and the indirect estimations of the milk yield of 
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