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The blue-spotted phenotype in a slow worm can be considered as an alternative colour morph or a second-
ary sexual characteristic. This phenotype is known to entail an elevated predation risk; thus, its continuous 
presence in a population must be balanced by additional and positive fitness consequences. In this study, 
we show that blue-spotted males are characterised by a greater snout-vent length (SVL) than typical speci-
mens. Importantly, the SVL of blue-spotted males reaches the magnitude of the average female size. This 
indicates that the presence of blue spots may involve a correlated positive effect on growth and body size. 
The greater body size of the blue-spotted males could enhance their survival and mating success, and thus 
facilitate the continued presence of a high fraction of this morph within the population. In addition, we 
found that the blue-spotted phenotype is more common in the eastern than the western slow worm, and 
the proposed fitness consequences of the blue-spotted phenotype might enhance its tendency to spread in 
the eastern Anguis lineage.
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The maintenance of co-occurring discontinuous 
colour phenotypes results from an interplay of vari-
ous evolutionary processes (Forsman et al. 2008). 
In general, the maintenance of such a polymorphic 
colouration is attributed to the opposing fitness con-
sequences associated with each morph (Andren & 
Nilson 1981). In reptiles, the costs of an alternative 
colour phenotypes are commonly discussed in terms 
of alterations in the protective properties of the co-
louration (Madsen & Stille 1988; Wüster et al. 2004; 

Farallo & Forstner 2012). These negative conse-
quences can be balanced by the benefits of a given 
colour phenotype, which can be related to improved 
thermoregulation (melanism; Forsman 1995) and/
or sexual signalling (Ballinger & McKinney 1967; 
Martin & Forsman 1999; Bastiaans et al. 2014). 
Less commonly, the maintenance of a polymorphic 
colouration may be driven by relaxed, instead of in-
creased, predation (Losey et al. 1997; Lancaster et al. 
2014); or by non-selective factors, such as genetic 
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pression of sexual characteristics in males is tightly 
coupled to the testosterone level (e.g. Garstka et al. 
1991; Sinervo et al. 2000; Ducrest et al. 2008; Sacchi 
et al. 2017), while the testosterone level also impacts 
the animal’s growth. In some species it may inhibit 
growth; whereas in other, even closely-related spe-
cies, it enhances growth and can lead to a greater 
achievable body size (Cox & John-Alder 2005). 
Consequently, blue-spotted males can be predicted 
to be characterised by a larger size compared to typi-
cal non-spotted males. Such a positive effect of the 
blue-spotted morph on the male size could represent 
a potential mechanism that maintains this colour 
polymorphism in slow worms, due to the benefi-
cial effects of size on male survival (Civantos et al. 
1999), combat success and/or female choice (Capula 
et al. 1998).

In this study, we investigated whether this col-
our phenotype correlates with the male body size 
in a  free-living slow worms. As outlined above, 
a greater body size can be predicted for blue-spot-
ted males based upon at least two effects: first, the 
presence of blue spots could be linked to growth and 
eventual size through the positive impact of a high 
testosterone level; and alternatively, the blue-spotted 
pattern could be restricted to older, and therefore 
larger, individuals. These two scenarios may not be 
fully distinguishable as they lead to a similar pre-
diction, but two additional observations can hint 
at which effect contributes to the male size. If the 
blue-spotted phenotype is associated with growth, 
then it should result in a body size that exceeds the 
size achievable by a typical male. Given that the 
slow worm is a species with a well-defined female-
biased sexual size dimorphism (SSD), such an effect 
could be expected to reduce or even entirely mask 
the SSD. Secondly, if the presence of a blue-spotted 
pattern is solely age-dependent, then it might not be 
observable in younger (smaller) individuals. As an 
outcome, the range of body size variation in typical 
and blue-spotted males would overlap only partially. 
To gain an insight into whether the phenotype-size 
relationship and the occurrence of blue-spotted in-
dividuals are species-specific, we densely-sampled 
two slow worm populations, – one population of 
A. fragilis and one of A. colchica (Nordmann 1840) 
– and scanned multiple populations of both species 
for the presence of the blue-spotted phenotype.

We collected data on 13 populations of A. colchica 
and 18 populations of A. fragilis (Fig. 2, Table 1). 
Two of the populations, A. colchica from the San 
River Valley and A. fragilis from Górażdże, were 
densely sampled (n=104 and n=115, respectively); 
whereas the samples from other populations were 

drift, ancestral polymorphism or gene flow (Lawson 
& King1996). Clearly, the ecological significance of 
colour polymorphism is highly context dependent, 
and each example of such a polymorphism may pro-
vide a novel insight into the evolutionary processes 
shaping such colour variations.

A commonly observed example of polymorphic 
colouration occurs in European slow worms (genus 
Anguis) – a phenotype with blue spots on the dor-
sal and lateral side of the body is widespread within 
the Anguis fragilis Linnaeus, 1758 complex (Völkl 
& Alfermann 2007; Terhivuo 1990; Figure 1). How-
ever, the functions and fitness effects of this blue-
spotted morph are poorly understood. As has been 
shown experimentally, blue-spotted slow worms 
are more visible to avian predators, which elevates 
the predation costs (Capula et al. 1997). In females, 
these costs may be balanced by positive association 
between the presence of blue spots and the body size 
(Sos 2011), which correlates with both improved sur-
vival (Civantos et al. 1999) and fecundity (Ferreiro 
& Galán 2004). On the other hand, a greater size of 
blue-spotted females can merely represent a side-
effect of the age-related expression of the blue-spot-
ted pattern, with no additive effects on growth (Sos 
2011). The fitness benefits of this colour pattern in 
males are unknown, but they are conceivable given 
the more common occurrence of the blue-spotted 
phenotype in this sex (Capula et al. 1997; Sos 2011). 

The sex-specific frequency of the blue-spotted 
morph might suggest that this colouration represents 
a secondary sexual characteristic of males, which 
is additionally indicated by the highest intensity of 
the blue-spot expression during the mating season 
(Capula et al. 1997; Sacchi et al. 2017). The ex-
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Fig. 1. Unspotted (top) and blue-spotted (bottom) phenotypes of 
anguid lizards. Photographs by Aleksandra Kolanek.



Anguis fragilis:
Prague population: NMP6V 32388, 35089/3, 

74407, 74543, 74990, 75517; 
Šumava population: NMP6V 31747, 32640, 

34275, 35100.
In the case of the San River Valley and Górażdże 

populations, the slow worms, except newborns and 
yearlings, were collected throughout the active sea-
son from spring to autumn. For each specimen, the 
snout-vent length (SVL), sex, tail condition (intact 
or broken) and colour phenotype (blue-spotted or 
typical) were assessed. Because the brightness of 
the blue spots can depend on the shedding cycle and 
season, we encoded this variable as a categorical one 
[presence/absence of spots] instead of a continuous 
one. Body mass was excluded from the dataset, be-
cause it can vary considerably, e.g. in relation to the 
absorptive state, and therefore it cannot be reliably 
standardised under field conditions.

For the additional sites, the number of sampled 
specimens per population was lower than the num-

smaller (from 3 to 16 specimens; see Table 1). Most 
of the data for the San River Valley population was 
extracted from a published source (Błażuk 2007) 
and supplemented by our original measurements 
from the same locality collected in the years 2008-
2020, while morphometric data on A. fragilis from 
Górażdże was collected by us during the years 2015-
2018. Data on 12 additional populations of A. colchica 
and 17 populations of A. fragilis was gathered most-
ly in 2014-2017 during earlier studies (Bury et al. 
2020), as well as from museum collections (Fig. 2, 
Table 1). The museum collections used in the study 
are listed below.

Anguis colchica: 
San River Valley population: Museum of Natural 

History of the University of Wrocław MNHW-Rep-
tilia-0247 (5 specimens); 

Štramberk population: National Museum in Prague 
(NMP6V) 7415-1-3, 70591, 72822, 74103-1,2, 
74119-1,2, 74121-1,2, 74132, 74132-1,2, 74153.
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Fig. 2. Map of the localities of the populations sampled in this study. Anguis colchica populations: 1 – Beskid Żywiecki, 2 – Kłaj, 
3 – Bóbrka, 4 – Myczkowce, 5 – Ustrzyki Górne, 6 – Czudec, 10 – Štramberk, 17 – Lutcza, 20 – Kuźnia Raciborska, 24 – Baligród, 
25 – Leżajsk, 29 – Lutoryż, 30 – San River Valley; Anguis fragilis populations: 7 – Wrocław, 8 – Šumava, 9 – Sulistrowiczki, 11 – 
Pszczew, 12 – Prague, 13 – Podkowa Leśna, 14 – Piotrków Trybunalski, 15 – Niemojów, 16 – Milicz, 18 – Lubliniec, 19 – Ligota, 
21 – Iława, 22 – Byków, 23 – Bartniki, 26 – Leśniczówka, 27 – Dzioły, 28 – Susły, 31 – Górażdże.



Data on the SVL was analysed using the General 
Mixed Model that compared three groups: typical 
males (N=29), blue-spotted males (N=27) and typi-
cal females (N=48). Only one blue-spotted female 
was found in the analysed population of A. colchica, 
which precluded it from a formal analysis and it was 
not included in the final dataset. Given that the meas-
urements of A. colchica originated from two sourc-

bers in the San River Valley and Górażdże, but was 
comparable among both species (mean: 8.42 for 
A. colchica and 5.82 for A. fragilis, t=1.87, p=0.07). 
We did not include these specimens in the morpho-
metric analysis due to their low number and a po-
tentially high interpopulation variability. Moreover, 
morphometric measurements were not gathered for 
all of the specimens from these populations.
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Table 1

List of the sampled populations of the eastern slow worm (Anguis colchica) and the western slow 
worm (Anguis fragilis). N – number of specimens from the sampled population. ‘Blue-spotted’ 
refers to the presence (+) or absence (–) of the blue-spotted phenotype in the sample; ‘Site ID’ is 
the number of the population in Figure 2. 

Population N
Geographic coordinates

Blue-spotted Site ID
Latitude (N) Longitude (E)

Anguis colchica
Beskid Żywiecki 4 49º48′ 19º14′ + 1
Kłaj 13 50º01′ 20º29′ + 2
Bóbrka 6 49º42′ 22º44′ + 3
Myczkowce 12 49º44′ 22º41′ + 4
Ustrzyki Górne 5 49º10′ 22º65′ + 5
Czudec 15 49º97′ 21º80′ + 6
Štramberk 15 49º59′ 18º12′ + 10
Lutcza 8 49º80′ 21º91′ + 17

Kuźnia Raciborska 6 50º20′ 17º81′ + 20
Baligród 3 49º33′ 22º28′ + 24
Leżajsk 4 50º26′ 22º43′ – 25
Lutoryż 10 49º96′ 21º88′ + 29
San River Valley 104 49º25′ 22º55′ + 30

Anguis fragilis
Wrocław 5 51º10′ 17º04′ + 7
Šumava 4 48º98′ 13º62′ – 8
Sulistrowiczki 6 50º84′ 16º,73′ + 9
Pszczew 6 52º47′ 15º78′ – 11
Prague 6 50º06′ 14º45′ – 12
Podkowa Leśna 3 52º12′ 20º73′ – 13
Piotrków Trybunalski 3 51º40′ 19º70′ – 14
Niemojów 7 50º17′ 16º56′ + 15
Milicz 6 51º53′ 17º34′ – 16
Lubliniec 5 50º66′ 18º68′ – 18
Ligota 5 51º36′ 17º,81′ – 19
Iława 3 53º59′ 19º56′ – 21
Byków 4 51º19′ 17º24′ + 22
Bartniki 5 52º01′ 20º25′ + 23
Leśniczówka 9 50º52′ 18º01′ + 26
Dzioły 16 50º51′ 18º03′ – 27
Susły 6 50º53′ 18º06′ – 28
Górażdże 115 50º52′ 18º04′ + 31



found a clear difference in the frequency of the blue-
spotted phenotype in the A. colchica vs A. fragilis 
populations. Specifically, the share of this pheno-
type reached 26% in A. colchica (27 blue-spotted 
per 104 individuals), while it only reached less than 
1% in A. fragilis (1 blue-spotted per 115 individuals) 
(Chi2=30.84, df=1, p<0.001). We further observed 
that, at the multi-population level, the blue-spotted 
phenotype occurs more commonly in A. colchica 
(12 per 13 populations) than in A. fragilis (6 per 18 
populations) (Chi2=10.78; df=1, p=0.001). Finally, 
the frequency of tail loss in the blue-spotted males 
did not differ significantly from the typical morph 
(Chi2=0.22; df=1, p=0.643), but the whole-popula-
tion frequency of tail loss was higher in A. colchica 
than in A. fragilis (Chi2=8.54; df=1, p=0.004).

Our study is the first to show the association be-
tween the blue-spotted phenotype in eastern slow 
worms and the male body size – as expected, the blue-
spotted males appeared on average to be larger than 
typical males. The data we were able to obtain did 
not allow us to exclude or corroborate the contribu-
tion of the ontogenetic colour change to the observed 
pattern, but it is probable that at individual’s age at 
least partially explains the larger size of blue-spotted 
males. However, in our study the ranges of body size 
variation in both of the phenotypes in males largely 
overlapped, meaning that both fully grown and old-
er individuals are present among the males without 
spots. Furthermore, blue-spotted males appeared to 
be not only larger than typical males, but also to ex-
ceed the size of typical males to a level comparable 
to the female size (Figure 3). It is therefore conceiv-
able that additional non-age-related factors contrib-
ute to the greater SVL of the blue-spotted males. The 
blue colouration in lizards often results from a high 
concentration of steroid hormones (Garstka et al. 
1991; Ducrest et al. 2008), including testosterone in 
the case of males. Experimental injections with tes-
tosterone have even been shown to enhance the ex-
pression of the bluish colouration, while at the same 
time, the testosterone may accelerate growth (Uller 
et al. 2007; Cox et al. 2008). To fully resolve what 
mechanisms underlie the observed association be-
tween colour phenotype and male body size, further 
studies that are designed to assess the growth rates, 
individual’s age and testosterone levels in different 
colour morphs are necessary.

The high frequency of the blue-spotted phenotype 
in A. colchica can be maintained due to the positive 
fitness consequences attributed to the role of the 
body size and colouration in male mating success. 
Specifically, the male body size in slow worms is 

es (Błażuk 2007 and our survey), we included the 
source of the data as a random factor in the model, 
but it appeared to be non-significant (p=0.26). We 
analysed the morphometric data only for the A. col-
chica population, because the number of blue-spot-
ted individuals in A. fragilis appeared to be too low 
for a statistical comparison (see below). The normal-
ity of the SVL data distribution was assessed prior to 
the analysis and no data transformation turned out 
to be necessary. The occurrence of the blue-spotted 
phenotype in both species (all populations) was ana-
lysed by comparing the number of populations for 
which the blue-spotted phenotype was or was not re-
corded with a 4x4 Chi2 test. In addition, we analysed 
the tail loss frequency in the slow worms (all popu-
lations). We compared the frequency of tail loss in 
the blues-spotted vs typical males of A. colchica, as 
well as the whole-population frequency of tail loss 
between A. fragilis and A. colchica with a 4x4 Chi2 
test. All analyses were conducted using the Statistica 
software (ver. 13.3, StatSoft Poland).

We found that the SVL differed significantly 
among the tested groups (females, typical males and 
blue-spotted males) (F2,100=9.33; p=0.002). A post-
hoc test revealed that the typical males were signifi-
cantly smaller than the females (p<0.001) and blue-
spotted males (p=0.015), but there were no detect-
able differences between the blue-spotted males and 
the females (p=0.613). Furthermore, the range of the 
body size variation overlapped largely between the 
blue-spotted and typical males (Figure 3). Although it 
was not possible to test the effects of the colour phe-
notype on the SVL in A. fragilis due to an extremely 
low number of blue-spotted individuals (N=1), we 
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Fig. 3. Body size of normally-coloured males, blue-spotted males 
and typical females of Anguis colchica. Lines with an asterisk 
indicate differences that are significant (p<0.05). Box – 25-75%; 
whiskers – non-outlier range (1.5 of the interquartile range be-
low the first quartile or above the third quartile); black circle 
– mean.
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