An Unusual Symbiotic System in *Elymana kozhevnikovi* (Zachvatkin, 1938) and *Elymana sulphurella* (Zetterstedt, 1828) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae)

Michał KOBIAŁKA, Anna MICHALIK and Teresa SZKLARZEWICZ^{\boxtimes}

Accepted March 07, 2018	Published online March 21, 2018	Issue online June 22, 2018
Original article	KOBIAŁKA M., MICHALIK A., SZKLAR Elymana kozhevnikovi (Zachvatkin, 19 (Insecta, Hemiptera, Cicadellidae: Delt	ZEWICZ T. 2018. An unusual symbiotic system in 938) and <i>Elymana sulphurella</i> (Zetterstedt, 1828) ocephalinae). Folia Biologica (Kraków) 66 : 13-24.
	Morphological and molecular analyse Elymana kozhevnikovi and E. sulphurella e Sulcia (phylum Bacteroidetes), Nasuia Arsenophonus (phylum Proteobacteri bacteria (phylum Proteobacteria, class G showed that in some bacteriocytes, apai are likewise present. The use of fluor occurrence of Sodalis-like bacteria in t distributed in some cells of the bacteric the same bacteriocytes. Moreover, Arse Wolbachia and Rickettsia were also dete E. kozhevnikovi and E. sulphurella. Suld are transovarially transmitted from one	es revealed that the Deltocephalinae leafhoppers ire host to four bacteriocyte-associated microorganisms: (phylum Proteobacteria, class Betaproteobacteria), a, class Gammaproteobacteria) and Sodalis-like Gammaproteobacteria). Ultrastructural observations rt from Sulcia, small elongated, rod-shaped bacteria rescence <i>in situ</i> hybridization (FISH) revealed the these bacteriocytes. Sodalis-like bacteria were also ome sheath. Nasuia and Arsenophonus co-existed in enophonus bacteria were dispersed in fat body cells. Sected alongside bacteriocyte-associated symbionts in <i>cia</i> , Nasuia, Arsenophonus and Sodalis-like bacteria generation to the next.
	Key words: Symbiotic microorganisms, Wolbachia, Rickettsia, transovarial tran	Sulcia, Nasuia, Arsenophonus, Sodalis-like bacteria, asmission.
	Michał KOBIAŁKA, Anna MICHALIK, Tere Biology and Morphology of Invertebra Jagiellonian University, Gronostajowa E-mail: teresa.szklarzewicz@uj.edu.pl	esa SZKLARZEWICZ [™] , Department of Developmental tes, Institute of Zoology and Biomedical Research, 9, 30-387 Kraków, Poland.

Deltocephalinae leafhoppers, as other plant sapsucking hemipterans, live in mutualistic relations with microorganisms including bacteria and/or yeast-like symbionts. The presence of these associates is connected with the restricted diet of host insects, poor in essential nutrients (mainly amino acids) (reviewed e.g. in BUCHNER 1965; DOUG-LAS 1998; BAUMANN 2005). It is generally accepted that the occurrence of obligate symbionts is a result of an ancient acquisition of microorganisms by the ancestor of these insects resulting in the presence of microorganisms in all the descendants. As a consequence of the long-term coevolution between host insects and their symbionts, neither can survive as separate entities (i.e. host insects devoid of microorganisms cannot properly develop or reproduce, microorganisms cannot be cultivated on laboratory media). On account of this mutualistic relationship, BUCHNER (1965) termed the obligate microorganisms "primary symbionts". BUCHNER (1965) also distinguished "accessory symbionts" (later termed "facultative symbionts" or "secondary symbionts") which may occur in some populations only. The presence of the latter in host insects is a consequence of, as a rule, their more recent acquisition. Secondary symbionts may fulfill different functions, e.g. they may protect host insects against parasites or heat stress (MONTLLOR et al. 2002; OLIVER et al. 2003; ŁUKASIK et al. 2013). Recent genomic analyses have shown that they may also be engaged in the synthesis of amino acids or other factors in metabolic pathways in different groups of hemipterans (TAKIYA et al. 2006; LAMELAS et al. 2011; SLOAN & MORAN 2012; LUAN et al. 2015; HUSNIK & MCCUTCHEON 2016). On ac-

© Institute of Systematics and Evolution of Animals, PAS, Kraków, 2018 Open Access article distributed under the terms of the Creative Commons Attribution License (CC-BY) <u>http://creativecommons.org/licences/by/4.0</u> OPEN I ACCESS count on the metabolic complementarity of symbionts residing in auchenorrhynchous hemipterans and their mutualistic association with host insects, TAKIYA and co-workers (2006) termed these symbionts "coprimary symbionts".

Previous histological observations by MÜLLER (1962) and BUCHNER (1965) have shown that auchenorrhynchous hemipterans (cicadas, leafhoppers, treehoppers, spittlebugs and planthoppers) generally harbor several different symbionts. More recent molecular work determined their systematic affinity and function, revealing that auchenorrhynchous hemipterans host the ancient symbionts: Candidatus Sulcia muelleri (hereafter Sulcia) (phylum Bacteroidetes) and betaproteobacterial symbionts (phylum Proteobacteria) (MORAN et al. 2005; TAKIYA et al. 2006; BRES-SAN et al. 2009; NODA et al. 2012; URBAN & CRYAN 2012: BENNETT & MORAN 2013: ISHII et al. 2013; KOGA et al. 2013; SZKLARZEWICZ et al. 2016; KOBIAŁKA et al. 2015, 2016; MAO et al. 2017). In some auchenorrhynchous hemipterans, the ancient betaproteobacterial symbiont has been lost and replaced by other bacteria (e.g. Gammaproteobacteria or Alphaproteobacteria) (MORAN et al. 2003; TAKIYA et al. 2006; MCCUTCHEON et al. 2009; KOGA et al. 2013; MICHALIK et al. 2014). Moreover, in some groups of auchenorrhynchous hemipterans, the ancient symbionts (only the betaproteobacterial symbiont or both Sulcia and the betaproteobacterial symbiont) have been eliminated and replaced by yeastlike microorganisms (NODA 1977; NODA et al. 1995; SACCHI et al. 2008; MICHALIK et al. 2009; NISHINO et al. 2016; KOBIAŁKA et al. 2016, 2017). Since the Deltocephalinae possess diverse symbiotic associates in comparison to other auchenorrhynchous hemipterans (SACCHI et al. 2008; ISHII et al. 2013; BENNETT & MORAN 2013; KOBIAŁKA et al. 2015, 2016, 2017), in this work we described the symbiotic systems of two unexamined representatives of these leafhoppers, Elymana kozhevnikovi and E. sulphurella, by means of molecular and ultrastructural methods.

Material and Methods

Insects

The adult females of *Elymana kozhevnikovi* (Zachvatkin, 1938) and *Elymana sulphurella* (Zetterstedt, 1828) were collected in the southern part of Poland (Kraków, Częstochowa, Gliwice, Katowice) from June to September 2012-2016 from the grasses of the family Poaceae.

Light and electron microscopy

The dissected abdomens of adult females of all species examined were fixed in 2.5% glutaraldehyde in 0.1 M phosphate buffer (pH 7.4) at 4°C for three months. Next, the material was rinsed in the phosphate buffer with the addition of sucrose (5.8 g/100 ml) and postfixed in 1% osmium tetroxide in the same buffer. Then, the material was dehydrated in a graded series of ethanol and acetone and embedded in epoxy resin Epon 812 (Serva, Heidelberg, Germany). The semithin sections (1 µm thick) obtained from about twenty five females of E. kozhevnikovi and about twenty five females of E. sulphurella were stained with 1% methylene blue in 1% borax and photographed using a Nikon Eclipse 80i light microscope (LM). The ultrathin sections (90 nm thick) were contrasted with uranyl acetate and lead citrate and examined using a Jeol JEM 2100 electron transmission microscope (TEM) at 80 kV.

DNA analyses

DNA was extracted individually from the dissected abdomens of ten females preserved in 100% ethanol. DNA extraction was conducted using the Sherlock AX extraction kit (A&A Biotechnology) according to the manufacturer's protocol and next DNA was stored at 4°C for further analyses. Molecular identification of bacteria associated with examined species was performed based on their 16S rDNA sequences which were obtained by amplifications with symbiont-specific primers (listed in Table 1). PCR reactions were run in a total volume of 20 µl made up of 10 µl of the PCR Mix Plus HGC mixture (A&A Biotechnology), 8 µl of water, $0.5 \,\mu$ l of each of the primers (10 μ M) and 1 μ l of the DNA template $(1 \mu g/\mu l)$ under the following protocol: an initial denaturation step at 94°C for a duration of 3 min, followed by 33 cycles at 94°C for 30 s, 54-56°C for 40 s (see Table 1), 70°C for 1 min 40 s and a final extension step of 5 min at 72° C. The PCR products were visualized by electrophoresis in 1.5% agarose gel stained with Midori Green (Nippon Genetics Europe). The positive PCR products were sent to an external company (Genomed) for DNA sequencing. The GenBank accession numbers of sequences obtained are listed in Table 2.

Phylogenetic analyses

The phylogenetic analyses were performed based on sequences of 16S rDNA of symbionts of *E. kozhevnikovi* and *E. sulphurella* and selected symbionts of Deltocephalinae leafhoppers deposited in the GenBank database. The sequences were then edited using BioEdit Sequence Alignment

Table	1	

Purpose	Primer name	Primer sequence (5'-3')	Target gene	Annealing temperature	Source
Diagnostic PCR	10CFB	AGAGTTTGATCATGGCTCAGGATG	16S rRNA gene	54°C	MORAN <i>et al.</i> 2005
	16SA1	AGAGTTGATCMTGGCTCAG	16S rRNA gene of	54°C	FUKATSU & NIKOH
	Sod1248R	TCCGCTGACTCTCGCGAGAT	Sodalis-like symbionts	54 C	1998
	ArsF	TGGCTCAGATTGAACGCTG	16S rRNA gene of	54°C	This study
	ArsR	CACCGCAGTCATGAATCAC	Arsenophonus		
	Nasuia2F	TAAAGCGGGGAAAACCTCGT	16S rRNA gene of Nasuia	56°C	KOBIAŁKA <i>et al.</i> in preparation
	Nasuia2R	GCATGCTGATCCGCGATTAC			
	Nasuia5F	GCTTGATCCAGCAATGTYRC	16S rRNA gene of Nasuia	56°C	KOBIAŁKA <i>et al.</i> in preparation
	Nasuia5R	ACCTTCCAGTACGGCTACCT			
	Rick158F	CGGAGG AAAGAT TTATCG CTG	16S rRNA gene of	54°C	ISHII <i>et al.</i> 2013
	Rick1206R	CACGTC ACCGTC TTGCTC	Rickettsia		
	WspF	TGGTCCAATAAGTGAGAGAAAC	16S rRNA gene of <i>Wolbachia</i>	55°C	ZHOU <i>et al.</i> 1998
	WspR	AAAAATTAAACGCTACTCCA			
FISH	Ars2	Cy5-TCATGACCACAACCTCCAAA	16S rRNA gene of Arsenophonus	Not applicable	GOTTLIEB <i>et al.</i> 2008
	BET940R	Cy5-TTAATCCACATCATCCACCG	16S rRNA gene of Betaproteobacteria	Not applicable	DEMANÈCHE <i>et al.</i> 2008
	Sod1248R	Cy3-TCCGCTGACTCTCGGGAGAT	16S rRNA gene of Sodalis-like symbionts	Not applicable	KOGA <i>et al.</i> 2013
	Sul664R	Cy3-CCMCACATTCCAGYTACTCC	16S rRNA gene of Sulcia	Not applicable	KOGA <i>et al.</i> 2013

Primers and fluorochrome-labeled probes used in this study

Table 2

List of investigated symbiotic microorganisms with the accession numbers of the sequences

Species	Symbionts	GenBank number
	Sulcia	MG840399
Elymana kozhevnikovi (Zachvatkin, 1938)	Nasuia	MG878963
	Arsenophonus	MG894669
	Sodalis	MG835278
	Wolbachia	MG873552
	Sulcia	MG840400
	Nasuia	MG878964
Elymana sulphurella (Zetterstedt, 1828)	Arsenophonus	MG894670
	Sodalis	MG835279
	Wolbachia	MG873553

Editor 5.0.9 (HALL 1999), and following this, the sequence alignments were generated using ClustalX 1.8 (THOMPSON *et al.* 1997). The phylogenetic analyses were conducted using MrBayes 3.2.2 software (HUELSENBECK & RONQUIST 2001). In this analysis four incremental Metropolis-coupled MCMC chains (3 heated and 1 cold) were run for ten million generations with sampling every 1000 generations. The convergence of analyses was validated using Tracer software (RAMBAUT & DRUMMOND 2007) and the first 25 % of trees were

discarded as 'burn-in'. The results of the Bayesian analysis were visualized using FigTree 1.4.0 software (RAMBAUT 2009).

Fluorescence in situ hybridization (FISH)

Fluorescence *in situ* hybridization (FISH) was conducted with symbiont-specific probes (see Table 1). Ten females preserved in 100% ethanol were rehydrated, fixed in 4% formaldehyde and dehydrated through incubations in 80%, 90% and

100% ethanol and acetone. Then, material was embedded in Technovit 8100 resin and cut into sections. Hybridization was performed using a hybridization buffer containing: 1 ml 1M Tris-HCl (pH 8.0), 9 ml 5 M NaCl, 25 μ l 20% SDS, 15 ml 30% formamide and about 15 ml of distilled water. The slides were incubated in 200 μ l of hybridization solution (hybridization buffer + probes) overnight, at room temperature (ŁUKASIK *et al.* 2017). Next, the slides were washed in PBS three times for 10 minutes, dried and covered with ProLong Gold Antifade Reagent (Life Technologies). The hybridized slides were then examined using a confocal laser scanning microscope Zeiss Axio Observer LSM 710.

Results

Molecular identification of symbiotic microorganisms

Analysis of the 16S rDNA sequences of symbionts associated with *Elymana kozhevnikovi* and *Elymana sulphurella* indicated that the examined species of deltocephalinae leafhoppers are host to six kinds of bacteria: *Sulcia*, *Nasuia*, *Arsenophonus*, *Sodalis*,

Wolbachia and Rickettsia. Sulcia, Nasuia, Arsenophonus and Sodalis were detected in all the examined individuals. The 16S rDNA sequences of Sulcia, Nasuia and Arsenophonus symbionts of both Elymana species were identical. Sequences of Sulcia and Nasuia show a high similarity (99%) to 16S rDNA sequences of Sulcia and Nasuia occurring in other representatives of Deltocephalinae, whereas 16S rDNA sequences of Arsenophonus symbionts are similar to those in Arsenophonus bacteria detected in the bat fly Basilia boardmani [KC597734] and aphid Aphis melosae [KF824532]. In turn, the sequences of 16S rDNA of Sodalis-like bacteria of E. kozhevnikovi and E. sulphurella are almost identical (99% identity) and display 99% similarity to the 16S rDNA of bacteria Sodalis praecaptivus [CP006569] and the Sodalis symbiont of the clown stink bug Poecilocoris lewisi [AB915782]. In some of the examined individuals, bacteria belonging to the genera Wolbachia (E. kozhevnikovi 2/6; E. sulphurella 2/8) and Rickettsia (E. kozhevnikovi 3/7; *E. sulphurella* 3/7) were also detected.

Phylogenetic analyses of the obtained 16S rDNA sequences of *Sulcia* and *Nasuia* symbionts confirmed their systematic affiliation (Figs 1, 2). The topologies resulting from the Bayesian inference of the *Sulcia* and *Nasuia* symbionts are shown in Figs 1 and 2, respectively.

Fig. 1. Phylogenetic tree showing the relationships of *Sulcia* symbionts of the examined *Elymana kozhevnikovi* and *E. sulphurella* leafhoppers and other representatives of the subfamily Deltocephalinae, based on 16S RNA gene sequences. The numbers associated with the branches indicate the Bayesian posterior probability values. The accession numbers of the sequences used in the phylogenetic analysis have been put in brackets. For outgroups, *Sulcia* symbionts of the planthopper *Oliarus intermedicus* (Fulgoromorpha) and leafhopper *Evacanthus interruptus* (Cicadellidae) were used.

Fig. 2. Phylogenetic tree based on 16S rRNA sequences of *Nasuia* symbiont of the examined *Elymana kozhevnikovi and E. sulphurella* leafhoppers and other representatives of the subfamily Deltocephalinae, based on 16S RNA gene sequences. The numbers associated with the branches indicate Bayesian posterior probability values. The accession numbers of the sequences used in the phylogenetic analysis have been put in brackets. The *Vidania* symbiont of the planthopper *Oliarus fulicicola* was used as an outgroup.

Ultrastructure and distribution of symbiotic microorganisms

Histological observations revealed that paired bacteriomes occur in the females of Elvmana kozhevnikovi and E. sulphurella (Fig. 3). Each bacteriome is composed of large bacteriocytes (Fig. 3). Two easily recognizable zones can be distinguished in the bacteriomes: a peripheral zone (Fig. 3) containing bacteriocytes with large, pleomorphic bacteria (Fig. 4) and a central zone (Fig. 3) with bacteriocytes containing large, lobated bacteria (Figs 7, 9) and large, elongated bacteria (Figs 7, 8, 8 insert, 9). Fluorescence in situ hybridization of the bacteriocyte-associated symbionts identified the pleomorphic microorganisms residing in peripheral bacteriocytes as Sulcia bacteria (Fig. 13), and the lobated microorganisms as Nasuia bacteria (Fig. 13). Sulcia stain more intensely with methylene blue (Figs 3, 8) and are more electrondense under an electron transmission microscope (Figs 4, 5) compared to Nasuia (Figs 7, 9). In all the examined individuals of E. kozhevnikovi and E. sulphurella, in the cytoplasm and in the nuclei of some bacteriocytes with bacteria Sulcia (Fig. 5)

and in some cells of the bacteriome sheath (Fig. 6) small, elongated, rod-shaped microorganisms occur. These microorganisms measure about 0.4 µm in diameter. FISH experiments using specific probes showed that Sodalis-like bacteria are present in bacteriocytes with Sulcia bacteria as well as in cells of the bacteriome sheath (Fig. 13 insert). In all the bacteriocytes with Nasuia large, elongated microorganisms also occur (Figs 7, 8, 8 insert, 9). The latter measure $1-1.2 \,\mu\text{m}$ in diameter. The use of the FISH technique identified these microorganisms as Arsenophonus bacteria (Fig. 14). It was observed that both in the younger females and in older (i.e. reproductive) females in some bacteriocytes Arsenophonus bacteria undergo degeneration (Figs 8, 10). In consequence, in these bacteriocytes numerous fagosomes and lamellar bodies appear (Fig. 10). Ultrastructural observations (Figs 11, 12) as well as FISH identification (Fig. 14 insert) revealed that both in E. kozhevnikovi and E. sulphurella, Arsenophonus bacteria are also present in fat body cells. Some Arsenophonus bacteria residing in fat body cells likewise undergo degeneration (Fig. 12).

Figs 3-12. Distribution of symbiotic bacteria in the body of *Elymana kozhevnikovi* and *E. sulphurella*. Fig. 3. *E. sulphurella*. Fig. 4. *E. sulphurella*. Bacteriocyte with bacteria *Sulcia* (s). Fig. 5. *E. kozhevnikovi*. Bacteriocyte with bacteria *Sulcia* (s). Note small, elongated, rod-shaped bacteria in the bacteriocyte cytoplasm (white arrows) and in the nucleus (white, double arrows). Fig. 6. *E. kozhevnikovi*. Cell of the bacteriome sheath surrounding the bacteriome. Note small, elongated, rod-shaped bacteria in the bacteriocyte cytoplasm (white arrows) and in the nucleus (white, double arrows). Fig. 6. *E. kozhevnikovi*. Cell of the bacteriome sheath surrounding the bacteriome. Note small, elongated, rod-shaped bacteria in the bacteriocyte cytoplasm (white arrows) and in the nucleus (white, double arrows). Fig. 7. *E. kozhevnikovi*. Bacteriocyte with bacteria *Nasuia* (n). Note single bacterium *Arsenophonus* (black arrow) accompanying bacteria *Nasuia*. Fig. 8. *E. kozhevnikovi*. Fragment of the bacteriome containing bacteria (black arrows). Note degenerating *Arsenophonus* bacteria (marked with a black, dashed line). Fig. 8 insert. *E. sulphurella*. *Arsenophonus* bacteria (black arrows). Fig. 9. *E. kozhevnikovi*. Fragment of two bacteriocytes with *Nasuia* (n). Note single *Arsenophonus* bacteria (black arrows). Fig. 9. *E. kozhevnikovi*. Fragment of bacteriocytes with *Nasuia* (n). Note single *Arsenophonus* bacteria (black arrows) among *Nasuia*. Fig. 10. *E. sulphurella*. Fragment of bacteriocytes with *Nasuia* and *Arsenophonus* bacteria (black arrows) among *Nasuia*. Fig. 10. *E. sulphurella*. Figs 3, 8. LM, methylene blue, scale bar = 25 µm. Figs 4–7, 7 insert, 9–12. TEM, scale bar = 2µm. bn – bacteriocyte nucleus; en – nucleus of the cell of the bacteriome sheath; fb – fat body; fc – follicular epithelium; mg – midgut; oc – oocyte.

Figs 13-14. Fluorescence *in situ* identification of symbionts of *Elymana sulphurella*. Fig. 13. Bacteriocytes with *Sulcia* (shown in green) and *Nasuia* (shown in red) bacteria. Fig. 13 insert. *Sodalis*-like bacteria (shown in green) residing in bacteriocytes (marked with a white, dashed line) and in cells of the bacteriome sheath (marked with a white, dotted line). *Nasuia* is shown in red. Fig. 14. *Arsenophonus* bacteria residing in bacteriocytes (shown in red). Fig. 14 insert. *Arsenophonus* residing in fat body cells (shown in red). Confocal microscope, scale bar = 25µm. bn – bacteriocyte nucleus stained with DAPI.

Transovarial transmission of symbionts

In reproductive females the bacteria leave the bacteriomes and invade ovaries. Ovaries of leafhoppers consist of seven elongated tubes called ovarioles. In each ovariole several linearly arranged oocytes are present. The oocytes are surrounded with a single layer of follicular cells (for further details concerning the organization of insect ovaries and course of oogenesis, see BÜNING 1994; BILIŃSKI 1998). The bacteria are released from the bacteriocytes and begin to invade follicular cells surrounding the posterior pole of the terminal oocytes which are at the stage of late vitellogenesis (Fig. 15). Sulcia, Nasuia, Arsenophonus and Sodalis-like bacteria enter the cytoplasm of follicular cells (Figs 16, 17). After passing through the follicular epithelium, bacteria accumulate in the space between the former and the oocyte surface (termed the perivitelline space), finally forming a "symbiont ball" (Fig. 18). The bacteria residing inside the "symbiont ball" closely adhere to each other (Figs 19, 20).

Discussion

Our morphological and molecular analyses revealed that in two species of Deltocephalinae leafhoppers, *Elymana kozhevnikovi* and *E. sulphurella*, an unusual combination of four microorganisms, *Sulcia*, *Nasuia*, *Arsenophonus* and *Sodalis*-like bacteria, occurs. To our knowledge, the co-existence of both ancient symbionts (i.e. Sulcia and betaproteobacteria) and more recently acquired Arsenophonus and Sodalis-like bacteria has not been observed in any other auchenorrhynchous hemipteran. Moreover, even the co-residence of three bacterial associates such as Sulcia, Nasuia and novel Arsenophonus/Sodalis-like bacteria is a very rare phenomenon within these insects. Both ancestral symbionts co-residing with Arsenophonus bacteria have only been found in the Deltocephalinae leafhopper Macrosteles laevis (KOBIAŁKA et al. 2016), whereas these symbionts co-residing with Sodalis-like bacteria have only been observed in the spittlebug, Aphrophora quadrinotata (Cicadomorpha, Cercopoidea: Aphrophoridae) (KOGA et al. 2013) and in the planthopper Ommatidiotus dissimilis (MICHALIK et al. 2018a). According to KOGA and co-workers (2013), the three-symbiont association in A. quadrinotata may be a transitional situation in which the novel symbiont Sodalis did not yet eliminate the ancestral betaproteobacterial symbiont Zinderia. The similarity in the organization of the symbiotic systems in A. quadrinotata and Deltocephalinae leafhoppers E. kozhevnikovi and E. sulphurella indicates a similar evolutionary scenario occurring in these hemipterans.

The situation observed in *E. kozhevnikovi* and *E. sulphurella* is of special interest. To our knowledge, the co-existence of *Nasuia* and *Arsenophonus* bacteria in the same bacteriocytes has never been reported for auchenorrhynchous hemipter-

Figs 15-20. Consecutive stages of transovarial transmission of symbiotic bacteria in *Elymana kozhevnikovi* and *E. sulphurella*. Fig. 15. *E. kozhevnikovi*. *Sulcia* (white arrowheads), *Nasuia* (black arrowheads) and *Arsenophonus* bacteria (black arrows) invade follicular cells surrounding the terminal (longitudinal section). Fig.16. *E. sulphurella*. Posterior pole of the ovariole (cross section). Follicular cells are tightly packed with symbiotic *Sulcia* (white arrowheads), *Nasuia* (black arrowheads) and *Arsenophonus bacteria* (black arrows) bacteria. Fig. 17. *E. kozhevnikovi*. *Sulcia* (s), *Nasuia* (n), *Arsenophonus* bacteria (black arrows) and small, rod-shaped *Sodalis*-like bacteria (marked with a black, continuous line) migrate through the cytoplasm of the follicular cell. Figs 18-20. "Symbiont ball" containing *Sulcia* (white arrowheads in LM images, s in TEM images), *Nasuia* (black arrowheads) at the posterior pole of the oocyte. Figs 18, 20. *E. sulphurella*. Fig. 19. *E. kozhevnikovi*. Figs 15, 16, 18. LM, methylene blue, scale bar =25µm. Figs 17, 19, 20. TEM, scale bar = 2µm. fc – follicular cell; fn – follicular cell nucleus; oc – oocyte; sb – symbiont ball.

ans. Moreover, ultrastructural observations clearly indicate that in all the examined females of *E. kozhevnikovi* and *E. sulphurella*, both in bacteriocytes and in fat body cells, numerous *Arsenophonus* bacteria undergo degeneration (see Figs 8, 10, 12). Based on morphological observations, it is very difficult to comment on this phenomenon. Additionally, it cannot be excluded that some of the lamellar bodies in the bacteriocytes may represent remnants of *Nasuia* bacteria. It may be speculated that *Arsenophonus*, as a novel symbiont of *E. kozhevnikovi* and *E. sulphurella*, may be neutralized by the host insect. This, in turn, corresponds well with the above-mentioned hypothesis of the intermediate state between the *Sulcia* and *Nasuia* system and the *Sulcia* and *Arsenophonus* system. Thus, in both of these leafhoppers, the ancestral *Nasuia* still exists and functions, but newly acquired *Arsenophonus* bacteria have already begun the long process of elimination of this symbiont. It seems that the occurrence of *Arsenophonus* both in the specialized bacteriocytes and in the fat body cells confirms the intermediate state of symbiosis in *Elymana*. The verification of this hypothesis will be the subject of further work with the use of genomic analyses.

Our PCR analyses revealed that Sodalis-like bacteria occur within all of the examined individuals of E. kozhevnikovi and E. sulphurella. The combination of results of ultrastructural observations and FISH method indicates that the microorganisms present in bacteriocytes with Sulcia and in the cells of the bacteriome sheath represent Soda*lis*-like bacteria. However, based on these results, we are unable to determine whether these bacteria are present both in the cytoplasm and in the cell nuclei. Taking into account the fact that E. kozhevnikovi and E. sulphurella are host to Rickettsia and Wolbachia which may occur intracellularly (ARNEODO et al. 2008; SCHULZ & HORN 2015; KOBIAŁKA in preparation), it cannot be excluded that Sodalis-like bacteria are distributed in the cytoplasm, whereas Rickettsia or Wolbachia may reside inside the nucleus. To resolve this question, further detailed studies are required. The role of Sodalis-like bacteria in the biology of E. kozhevnikovi and E. sulphurella remains unclear. Several facts such as: (1) the occurrence of these bacteria in all the examined individuals detected by means of ultrastructural and molecular methods, (2) their transovarial transmission between generations and (3) lack of any symptoms of negative influence on host insects, suggest that *Sodalis*-like bacteria may be beneficial to their host insects. This, in turn, leads to the conclusion that these bacteria may represent the most recently acquired symbionts.

Both Arsenophonus and Sodalis-like bacteria are widely distributed within insects (reviewed in DURON et al. 2008; NOVÁKOVÁ et al. 2009; WILKES et al. 2011). The interactions between Arsenophonus and insects may be parasitic or symbiotic (reviewed in WILKES et al. 2011). The symbiotic Arsenophonus (or its close relatives) has been found in hematophagous insects, for which it provides B vitamins (reviewed in WILKES et al. 2011). Within plant sap-feeding hemipterans, Arsenophonus has been detected in Cixiidae planthoppers, aphids, psyllids, whiteflies, the Deltocephalinae leafhopper Macrosteles laevis and the scale insect Greenisca brachypodii (WILKES et al. 2011; HALL et al. 2016; KOBIAŁKA et al. 2016; MICHALIK et al. 2018b). Sodalis-like symbionts have been observed, e.g. in tsetse flies (DALE & MAUDLIN 1999), heteropterans (KAIWA et al. 2010), scale insects (GATEHOUSE et al. 2011; KOGA et al. 2013; GRUWELL et al. 2014; HUSNIK & MCCUTCHEON 2016; SZKLARZEWICZ et al. 2018), leafhoppers (MICHALIK et al. 2014), spittlebugs (KOGA et al. 2013; KOGA & MORAN 2014), aphids (BURKE et al. 2009; MANZANO-MARIN et al. 2017), psyllids (THAO et al. 2000; HALL et al. 2016), phtirapterans (FUKATSU et al. 2007; BOYD et al. 2016), and weevils (TOJU & FUKATSU 2011; TOJU et al. 2013). Such a wide distribution of Arsenophonus and Sodalis-like symbionts among different groups of insects indicates the expansive nature of these bacteria and their tendency to replace the ancient symbionts.

Using PCR diagnostics we detected that apart from *Sulcia, Nasuia, Arsenophonus* and *Sodalis*-like symbionts, *E. kozhevnikovi* and *E. sulphurella* may harbor *Wolbachia* and *Rickettsia* bacteria widely distributed among arthropods. It seems probable that both these bacterial associates are dispersed in different tissues of these insects. However, to determine the detailed distribution of *Wolbachia* and *Rickettsia*, their role in the biology of the host insects and mode of transmission between generations, further comprehensive molecular and ultrastructural analyses are needed.

Our results provide new data on the symbionts of plant sap-sucking hemipterans and corroborate the previous observations that Deltocephalinae leafhoppers, uniquely among other hemipteran groups, are characterized by a large diversity of symbiotic systems. Numerous species of Deltocephalinae leafhoppers (Deltocephalus pulicaris, Athysanus argentarius, Euscelis incisus, Doratura stylata, Arthaldeus pascuellus, Errastunus ocellaris, Jassargus flori, Jassargus pseudocellaris, Psammotettix alienus, Psammotettix confinis, Turrutus socialis and Verdanus abdominalis, Macrosteles quadripunctatus, Macrosteles quadrilineatus, Macrosteles sexnotatus, Macrosteles striifrons, Matsumuratettix hiroglyphicus, Nepho*tettix cincticeps*) retained the ancient symbionts, i.e. Sulcia and Nasuia (WANGKEEREE et al. 2011; NODA et al. 2012; BENNETT & MORAN 2013; ISHII et al. 2013; KOBIAŁKA et al. 2015; BENNETT et al. 2016; KOBIAŁKA et al. in preparation). In E. kozhevnikovi and E. sulphurella, apart from ancient symbionts, novel symbionts - Arsenophonus and Sodalis-like bacteria are present (this study), whereas in Macrosteles laevis-the ancient symbionts are accompanied by Arsenophonus (KOBIAŁKA et al. 2016). It should be stressed that in M. laevis, the bacterium Arsenophonus does not occur individually, but is hidden inside cells of *Sulcia* bacteria. In Cicadula quadrinotata, Fieberiella septentrionalis, Graphocraerus ventralis and Orientus ishidae, the bacterium Nasuia has been lost and replaced by yeast-like symbionts (KOBIAŁKA et al. 2017), whereas in Balclutha calamagrostis and Balclutha punctata-by Sodalis-like bacteria (KOBIAŁKA et al. in preparation). In *Dalbulus maidis*, in turn, only Sulcia has been detected (BRENTASSI et al. 2017). These results indicate that ancient symbionts of Deltocephalinae leafhoppers undergo elimination and replacement by novel symbionts, such as Arsenophonus, Sodalis and yeast-like microorganisms.

Observations of the course of transmission of symbionts from the mother to offspring in different species of Deltocephalinae leafhoppers indicate that this process is uniform in this group of hemipterans (MÜLLER 1962; BUCHNER 1965; KOBIAŁKA *et al.*

2015, 2016, 2017; BRENTASSI et al. 2017). In all the hitherto examined Deltocephalinae leafhoppers, the symbiotic microorganisms (both the ancient symbionts and novel associates - bacteria or yeast-like symbionts) invade the posterior pole of the ovariole. The symbionts individually migrate through the cytoplasm of follicular cells surrounding the terminal oocytes and next they gather in the perivitelline space in the deep invagination of oolemma in the form of a "symbiont ball". The single exception is M. laevis in which the novel associate Arsenophonus does not infect the ovarioles individually, but is transported inside cells of Sulcia. Thus, this atypical behavior of Arsenophonus is probably connected with the young condition of association between this microorganism and *M. laevis*. Our ultrastructural observations have shown that in E. kozhevnikovi and E. sulphurella, Arsenophonus and Sodalis-like bacteria are individually transmitted to the ovariole. This, in turn, indicates that both species of Elymana have already developed a stable system of novel symbiont transmission.

Acknowledgments

We are greatly indebted to M.Sc. Ada JAN-KOWSKA for her skilled technical assistance and Dr. Dariusz ŚWIERCZEWSKI and Dr. Marcin WALCZAK for providing and identifying the insects. This work was carried out using a Jeol 2100 transmission electron microscope in the Laboratory of Microscopy, Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University.

Funding

This work was supported by funds from the National Science Centre, Poland, research grant 2015/17/N/NZ8/01573.

Author contributions

Research concept and design: M.K., T.S.; Collection and/or assembly of data: M.K.; Data analysis and interpretation: M.K., A.M., T.S.; Writing the article: M.K., A.M., T.S.; Critical revision of the article: T.S.; Final approval of article: T.S.

Conflict of Interest

The authors declare no conflict of interest.

References

- ARNEODO J.D., BRESSAN A., LHERMINIER J., MICHEL J., BOUDON-PADIEU E. 2008. Ultrastructural detection of an unusual intranuclear bacterium in *Pentastiridius leporinus* (Hemiptera: Cixiidae). J. Invertebr. Pathol. **97**: 310-313.
- BAUMANN P. 2005 Biology of bacteriocyte-associated endosymbionts of plant sup-sucking insects. Annu. Rev. Microbiol. 59: 155-189.
- BENNETT G.M., MORAN N.A. 2013. Small, smaller, smallest: the origin and evolution of ancient dual symbioses in a phloemfeeding insect. Genome Biol. Evol. **5**: 1675-1688.
- BENNETT G.M., ABBÀ S., KUBE M., MARZACHÌ C. 2016. Complete genome sequences of the obligate symbionts "Candidatus Sulcia muelleri" and "Ca. Nasuia deltocephalinicola" from the pestiferous leafhopper Macrosteles quadripunctulatus (Hemiptera: Cicadellidae). Genome Announc. 4: e01604-1615.
- BILIŃSKI S. 1998. Introductory remarks. Folia Histochem. Cytobiol. **3**: 143-145.
- BOYD B.M., ALLEN J.M., KOGA R., FUKATSU T., SWEET A.D., JOHNSON K.P., REED D.L. 2016. Two bacterial genera, Sodalis and Rickettsia, associated with the seal louse Proechinophthirus fluctus (Phthiraptera: Anoplura). Appl. Environ. Microbiol. 82: 3185-3197.
- BRENTASSI M.E., FRANCO E., BALATTI P., MEDINA R., BERNABEI F., DE REMES LENICOV A.M.M. 2017. Bacteriomes of the corn leafhopper, *Dalbulus maidis* (DeLong & Wolcott, 1923) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbor *Sulcia* symbiont: molecular characterization, ultrastructure and transovarial transmission. Protoplasma 254: 1421-1429.
- BRESSAN A., ARNEODO J., SIMONATO M., HAINES W.P., BOUDON-PADIEU E. 2009. Characterization and evolution of two bacteriome-inhabiting symbionts in cixiid planthoppers (Hemiptera: Fulgoromorpha: Pentastirini). Environ. Microbiol. **11**: 3265-3279.
- BUCHNER P. 1965. Endosymbiosis of Animals with Plant Microorganisms. Interscience, New York.
- BÜNING J. 1994. The ovary of Ectognatha, the insects *s. str*. (In: The Insect Ovary: Ultrastructure, Previtellogenic Growth and Evolution. J. BÜNING ed. Chapman and Hall, London): 31-305.
- BURKE G.R., NORMARK B.B., FAVRET C., MORAN N.A. 2009. Evolution and diversity of facultative symbionts from the aphid subfamily Lachninae. Appl. Environ. Microbiol. **75**: 5328-5335.
- DALE C., MAUDLIN I. 1999. *Sodalis* gen. nov. and *Sodalis* glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly *Glossina morsitans morsitans*. Int. J. Syst. Bacteriol. **49**: 267-275.
- DEMANÈCHE S., SANGUIN H., POTE J., NAVARRO E., BERNILLON D., MAVINGUI P., WILDI W., VOGEL T.M., SIMONET P. 2008. Antibiotic-resistant soil bacteria in transgenic plant fields. PNAS **105**: 3957-3962.
- DOUGLAS A.E. 1998. Nutritional interactions in insectmicrobial symbioses: aphids and their symbiotic bacteria *Buchnera*. Annu. Rev. Entomol. **43**: 17-37.
- DURON O., BOUCHON D., BOUTIN S., BELLAMY S., ZHOU L., ENGELSTÄDTER J., HURST G.D. 2008. The diversity of reproductive parasites among arthropods: *Wolbachia* do not walk alone. BMC Biol. 6: 27.
- FUKATSU T., NIKOH N. 1998. Two intracellular symbiotic bacteria from the mulberry psyllid *Anomoneura mori* (Insecta, Homoptera). Appl. Environ. Microbiol. 64: 3599-3606.
- FUKATSU T., KOGA R., SMITH W.A., TANAKA K., NIKOH N., SASAKI-FUKATSU K., YOSHIZAWA K., DALE C., CLAYTON D.H. 2007. Bacterial endosymbiont of the slender pigeon louse, *Columbicola columbae*, allied to endosymbionts of grain

weevils and tsetse flies. Appl. Environ. Microbiol. 73: 6660-6668.

- GATEHOUSE L.N., SUTHERLAND P., FORGIE S.A., KAJI R., CHRISTELLER J.T. 2011. Molecular and histological characterization of primary (Betaproteobacteria) and secondary (Gammaproteobacteria) endosymbionts of three mealybug species. Appl. Environ. Microbiol. **78**: 1187-1197.
- GOTTLIEB Y., GHANIM M., GUEGUEN G., KONTSEDALOV S., VAVRE F., FLEURY F., ZCHORI-FEIN E. 2008. Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J. **22**: 2591-2599.
- GRUWELL M.E., DUDA Z., MACCREADY J. 2014. Investigation of endosymbiotic bacteria associated with scale insects of the family Putoidae (Hemiptera: Coccoidea). Acta Zool. Bulg. 6: 29-34.
- HALL T.A. 1999. BIOEDIT: an user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
- HALL A. A.G., MORROW J.L., FROMONT C., STEINBAUER M.J., TAYLOR G.S., JOHNSON S.N., COOK J.M., RIEGLER R. 2016. Codivergence of the primary bacterial endosymbiont of psyllids versus host switches and replacement of their secondary bacterial endosymbionts. Environ. Microbiol. 18: 2591-2603.
- HUELSENBECK J.P., RONQUIST F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics **17**: 754-755.
- HUSNIK F., MCCUTCHEON J.P. 2016. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. PNAS **113**: E5416-E5424.
- ISHII Y., MATSUURA Y., KAKIZAWA S., NIKOH N., FUKATSU T. 2013. Diversity of bacterial endosymbionts associated with *Macrosteles* leafhoppers vectoring phytopathogenic phytoplasmas. Appl. Environ. Microbiol. **79**: 5013-5022.
- KAIWA N., HOSOKAWA T., KIKUCHI Y., NIKOH N., MENG X.Y., KIMURA N., ITO M., FUKATSU T. 2010. Primary gut symbiont and secondary, *Sodalis*-allied symbiont of the scutellerid stinkbug *Cantao ocellatus*. Appl. Environ. Microbiol. **76**: 3486-3494.
- KOBIAŁKA M., MICHALIK A., WALCZAK M., JUNKIERT Ł., SZKLARZEWICZ T. 2015. Symbiotic microorganisms of the leafhopper *Deltocephalus pulicaris* (Fallén, 1806) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae): molecular characterization, ultrastructure and transovarial transmission. Pol. J. Entomol. 84: 155-162.
- KOBIAŁKA M., MICHALIK A., WALCZAK M., JUNKIERT Ł., SZKLARZEWICZ T. 2016. Sulcia symbiont of the leafhopper Macrosteles laevis (Ribaut, 1927) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbors Arsenophonus bacteria. Protoplasma 253: 903-912.
- KOBIAŁKA M., MICHALIK A., WALCZAK M., SZKLARZEWICZ T. 2017. Dual 'bacterial-fungal' symbiosis in Deltocephalinae leafhoppers (Insecta, Hemiptera, Cicadomorpha: Cicadellidae). Microb. Ecol. https://doi.org/10.1007/s00248-017-1075-y.
- KOGA R., MORAN N.A. 2014. Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiont. ISME J. 8: 1237-1246.
- KOGA R., BENNETT G.M., CRYAN J.R., MORAN N.A. 2013. Evolutionary replacement of symbionts in an ancient and diverse insect lineage. Environ. Microbiol. **15**: 2073-2081.
- LAMELAS A., GOSALBES M. J., MOYA A., LATORRE A. 2011. New clues about the evolutionary history of metabolic losses in bacterial endosymbionts, provided by the genome of *Buchnera aphidicola* from the aphid *Cinara tujafilina*. Appl. Environ. Microbiol. **77**: 4446-4454.
- LUAN J-B., CHEN W., HASEGAWA D.K., SIMMONS A.M., WINTERMANTEL W.M., LING K-S., FEI Z., LIU S-S., DOUG-LAS A.E. 2015. Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects. Genome Biol. Evol. 7: 2635-2647.

- ŁUKASIK P., M. VAN ASCH M., GUO H., FERRARI J. GOD-FRAY H.C. 2013. Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol. Lett **16**: 214-218.
- ŁUKASIK P., NEWTON J.A., SANDERS J.G., HU Y., MOREAU C.S., KRONAUER D.J.C., O'DONNELL S., KOGA R., RUSSELL J.A. 2017. The structured diversity of specialized gut symbionts of the New World army ants. Mol. Ecol. **26**: 3808-3825.
- MANZANO-MARIN A., SZABO G., SIMON J-C., HORN M., LATORRE A. 2017. Happens in the best of subfamilies: establishment and repeated replacements of co-obligate secondary endosymbionts within Lachninae aphids. Environ. Microbiol. **19**: 393-408.
- MCCUTCHEON J.P., MCDONALD B.R., MORAN N.A. 2009. Convergent evolution of metabolic roles in bacterial cosymbionts of insects. PNAS **106**: 15394-15399.
- MAO M., YANG X., POFF K., BENNETT G. 2017. Comparative genomics of the dual-obligate symbionts from the treehopper, *Entylia carinata* (Hemiptera: Membracidae), provide insight into the origins and evolution of an ancient symbiosis. Genome Biol. Evol. **9**: 1803-1815.
- MICHALIK A., JANKOWSKA W., SZKLARZEWICZ T. 2009. Ultrastructure and transovarial transmission of endosymbiotic microorganisms in *Conomelus anceps* and *Metcalfa pruinosa* (Insecta, Hemiptera, Fulgoromorpha). Folia Biol. (Kraków) **57**: 131-137.
- MICHALIK A., SZWEDO J., STROISKI A., WIERCZEWSKI D., SZKLARZEWICZ T. 2018a. Symbiotic cornucopia of the monophagous planthopper *Ommatidiotus dissimilis* (Fallén, 1806) (Hemiptera, Fulgoromorpha: Caliscelidae). Protoplasma, https://doi.org/10.1007/s00709-018-1234-0.
- MICHALIK A., JANKOWSKA W., KOT M., GOŁAS A., SZKLARZEWICZ T. 2014. Symbiosis in the green leafhopper, *Cicadella viridis* (Hemiptera, Cicadellidae). Association *in statu nascendi*? Arthropod Struct. Dev. **43**: 579-587.
- MICHALIK A., SZWEDO J., STROIŃSKI A., ŚWIERCZEWSKI D., SZKLARZEWICZ T. 2018a. Symbiotic cornucopia of the monophagous planthopper *Ommatidiotus dissimilis* (Fallén, 1806) (Hemiptera, Fulgoromorpha: Caliscelidae). Protoplasma, https://doi.org/10.1007/s00709-018-1234-0.
- MICHALIK A., SCHULZ F., MICHALIK K., WASCHER F., HORN M., SZKLARZEWICZ T. 2018b. Coexistence of novel gammaproteobacterial and *Arsenophonus* symbionts in the scale insect *Greenisca brachypodii* (Hemiptera, Coccomorpha: Eriococcidae). Environ. Microbiol. https://doi.org/10.1111/1462-2920.14057.
- MONTLLOR C.B., MAXMEN A., PURCELL A.H. 2002. Facultative bacterial endosymbionts benefit pea aphids *Acyrthosiphon pisum* under heat stress. Ecol. Entomol. **27**: 189-195.
- MORAN N.A, DALE C., DUNBAR H., SMITH W.A., OCHMAN H. 2003. Intracellular symbionts of sharpshooters (Insecta, Hemiptera: Cicadellinae) form a distinct clade with a small genome. Environ. Microbiol. **5**: 116-126.
- MORAN N.A., TRAN P., GERARDO N.M. 2005. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the phylum Bacteroidetes. Appl. Environ. Microbiol. **71**: 8802-8810.
- MÜLLER H.J. 1962. Neuere Vorstellungen über Verbreitung und Phylogenie der Endosymbiosen der Zikaden. Z. Morphol. Ökol. Tiere 51: 190-210.
- NISHINO T., TANAHASHI M., LIN C.P., KOGA R., FUKATSU T. 2016. Fungal and bacterial endosymbionts of eared leafhoppers of the subfamily Ledrinae (Hemiptera: Cicadellidae). Appl. Entomol. Zool. **51**: 465-477.
- NODA H. 1977. Histological and histochemical observation of intracellular yeast-like symbiotes in the fat body of the small brown planthopper, *Laodelphax striatellus* (Homoptera: Delphacidae). Appl. Entomol. Zool. **12**: 134-141.
- NODA H., NAKASHIMA N., KOIZUMI M. 1995. Phylogenetic position of yeast-like symbiotes of rice planthoppers based

on partial 18S rDNA sequences. Insect Biochem. Mol. Biol. **25**: 639-646.

- NODA H., WATANABE K., KAWAI S., YUKUHIRO F., MIYOSHI T., TOMIZAWA M., KOIZUMI Y., NIKOH N., FUKATSU T. 2012. Bacteriome-associated endosymbionts of the green rice leafhopper *Nephotettix cincticeps* (Hemiptera: Cicadellidae). Appl. Entomol. Zool. **47**: 217-225.
- NOVÁKOVÁ E., HYPŠA V., MORAN N.A. 2009. *Arsenophonus*, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. **9**: 143.
- OLIVER K.M., RUSSELL J.A., MORAN N.A., HUNTER M.S. 2003. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. PNAS **100**: 1803-1807.
- RAMBAUT A. 2009. FigTree v1. 4.0: Tree Figure Drawing Tool. Available: http://tree.bio.ed.ac.uk/software/figtree/. Accessed 2014 Jul 2
- RAMBAUT A., DRUMMOND A.J. 2007. Tracer v1.4: MCMC trace analyses tool. Available: http://beast.bio.ed.ac.uk/Tracer.
- SACCHI L., GENCHI M., CLEMENTI E., BIGLIARDI E., AVAN-ZATTI A.M., PAJOROI M., NEGRI I., MARZORATI M., GONELLA E., ALMA A., DAFFONCHIO D., BANDI C. 2008. Multiple symbiosis in the leafhopper *Scaphoideus titanus* (Hemiptera: Cicadellidae): details of transovarial transmission of *Cardinium sp.* and yeast-like endosymbionts. Tissue Cell **40**: 231-242.
- SCHULZ F., HORN M. 2015. Intranuclear bacteria: inside the cellular control center of eukaryotes. Trends Cell Biol. **25**: 339-346.
- SLOAN D.B., MORAN N.A. 2012. Genome reduction and coevolution between the primary and secondary bacterial symbionts of psyllids. Mol. Biol. Evol. **29**: 3781-3792.
- SZKLARZEWICZ T., GRZYWACZ B., SZWEDO J., MICHALIK A. 2016. Bacterial symbionts of the leafhopper *Evacanthus interruptus* (Linnaeus, 1758) (Insecta, Hemiptera, Cicadellidae: Evacanthinae). Protoplasma **253**: 379-391.
- SZKLARZEWICZ T., KALANDYK-KOŁODZIEJCZYK M., MICHA-LIK K., JANKOWSKA W., MICHALIK A. 2018. Symbiotic mi-

croorganisms in *Puto superbus* (Leonardi, 1907) (Insecta, Hemiptera, Coccomorpha: Putoidae). Protoplasma **255**: 129-138.

- TAKIYA D.M., TRAN P., DIETRICH C.H., MORAN N.A. 2006. Co-cladogenesis spanning three phyla: leafhoppers (Insecta: Hemiptera: Cicadellidae) and their dual bacterial symbionts. Mol. Ecol. **15**: 4175-4191.
- THAO M.L., CLARK M.A., BAUMANN L., BRENNAN E.B., MORAN N.A., BAUMANN P. 2000. Secondary endosymbionts of psyllids have been acquired multiple times. Curr. Microbiol. **41**: 300-304.
- THOMPSON J.D., GIBSON T.J., PLEWNIAK F., JEANMOUGIN F., HIGGINS D.G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. **25**: 4876-4882.
- TOJU H., FUKATSU T. 2011. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and hostplants. Mol. Ecol. **20**: 853e868.
- TOJU H., TANABE A.S., NOTSU Y., SOTA T., FUKATSU T. 2013. Diversification of endosymbiosis: replacements, cospeciation and promiscuity of bacteriocyte symbionts in weevils. ISME J. 7: 1378-1390.
- URBAN J., CRYAN J. 2012. Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea). BMC Evol. Biol. **12**: 87.
- WANGKEEREE J., MILLER T.A., HANBOONSONG Y. 2011. Predominant bacteria symbionts in the leafhopper *Matsumuratettix hiroglyphicus* – the vector of sugarcane white leaf phytoplasma. Bull. Insectol. **64**: 215-216.
- WILKES T.E., DURON O., DARBY A.C., HYPŠA V., NOVÁKOVÁ E., HURST G.D.D. 2011. The genus *Arsenophonus*. (In: Manipulative Tenants: Bacteria Associated with Arthropods. E. ZCHORI-FEIN, K. BOURTZIS eds. CRC Press, Danvers): 225-244.
- ZHOU W., ROUSSET F., O'NEIL S. 1998. Phylogeny and PCR-based classification of *Wolbachia* strains using wsp gene sequences. Proc. Biol. Sci. **265**: 509-515.