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The relationship between humans and the insect pests of cultivated plants may be considered
to be an indirect coevolutionary process, i.e., an arms race. Over time, humans have developed
several strategies to minimize the negative impacts of insects on agricultural production.
However, insects have made adaptive responses via the evolution of resistance to insecticides,
and more recently against Bacillus thuriengiensis. Thus, we need to continuously invest
resources in the development of new strategies for crop protection. Recent advances in
genomics have demonstrated the possibility of a newweapon or strategy in this war, i.e., gene
silencing, which involves blocking the expression of specific genes via mRNA inactivation.
In the last decade, several studies have demonstrated the effectiveness of this strategy in the
control of different species of insects. However, several technical difficulties need to be
overcome to transform this potential into reality, such as the selection of target genes, the
concentration of dsRNA, the nucleotide sequence of the dsRNA, the length of dsRNA,
persistence in the insect body, and the life stage of the target species where gene silencing is
most efficient. This study analyzes several aspects related to the use of gene silencing in pest
control and it includes an overview of the inactivation process, as well as the problems that
need to be resolved to transform gene silencing into an effective pest control method.
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The relationship between humans and the pests
of cultivated plants may be viewed as a process
that is analogous to an arms race. The term “arms
race” is used to describe a coevolutionary relation-
ship where two species generate reciprocal selec-
tive pressure. Thus, adaptive changes that occur in
one species generate selective pressures on the other.
For example, we may highlight the relationships
between predators and prey, and/or between plants
and herbivores. Species undergo adaptive changes
over time, so the consumption rates of prey by preda-
tors and/or herbivores remain relatively constant in
the same way as the success rate of prey escape
(KAREIVA 1999; RAUSHER 2001; ANDERSON et al.
2010;STUKENBROCK&BATAILLON2012;STOUT2013).

The terms “indirect coevolution” or “arms race”
indicate that relationships occur via cultivated
plants, where the economic damage caused by in-
sects generate pressures on humans, thereby lead-
ing us to develop new strategies to protect these
plants and to minimize damage. We use this ex-
pression only to describe this specific aspect of our
relationship with insect pests, i.e., the interactions
between insects, cultivated crops, and human con-
trol strategies. The purpose of this analogy is to
highlight the continuity of this process (RAUSHER
2001). Humans invest a great deal of intellectual
energy into seeking and developing control tech-
niques to reduce agricultural losses. Examples of
these weapons include chemical insecticides and,
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more recently, the use of transgenic plants in agri-
culture. The adaptive responses of insects are rela-
tively rapid and they occur by the evolution of
resistant strains in most of the target species sub-
jected to our weapons (WHALON et al. 2008;
BIELZA 2008). The ability to learn allows us to re-
fine our strategies by applying resistance evolu-
tion management techniques, such as that found in
plants with genes (Bt) from Bacillus thuringiensis,
which reduce the speed of response of insects.
However, several studies have shown the presence
of resistant strains in Bt plants (BRAVO & SOBERÓN
2008; GASSMANN et al. 2011; HEAD&GREENPLATE
2012; TABASHNIK et al. 2013).

The analysis of our relationship with insect pests
clearly shows that, like other coevolutionary rela-
tionships, a continuous association demands per-
manent investment, so the rate of consumption
remains relatively constant, or at least within ac-
ceptable levels.

Recent advances in the area of genomics indicate
the possibility of using a new weapon or strategy in
this war, i.e., gene silencing with RNA. This strat-
egy employs a mechanism that eukaryotic cells use
naturally to destroy their own non-functional RNA
molecules, as well as to defend against viruses and
transposons. Gene silencing involves blocking the
expression of specific genes by destroying the cor-
responding mRNA molecules, so that the process
does not affect the rate of gene transcription.

This study aims to describe various aspects re-
lated to the use of this new strategy for the control
of agricultural pests. These aspects include an
overview of this inactivation process and the prob-
lems that must be resolved to realize the potential
of gene silencing in pest control.

Development

The process

Originally, RNAi was triggered accidentally in
petunia plants in 1990 (VAN DER KROL et al.,
1990; NAPOLI et al. 1990), although gene silenc-
ing as a system was first described by FIRE et al.
(1998) in Caenorhabditis elegans, which demon-
strated that this process was triggered by double-
stranded RNA molecules (dsRNA). Subsequently,
the mechanism has been studied intensively and
many reports have described the process, includ-
ing evaluations of its practical application in dif-
ferent areas (for details of the mechanism see:
SHARMA et al. 2013; NISHIMURA et al. 2013; GAO
et al. 2014; CHABOT et al. 2014; HEATH et al.
2014; WILSON & DOUDNA 2013; DU TOIT 2014,
and re- ferences therein). To achieve silencing, the
dsRNA molecule must be complementary to the

target gene and it may originate either in the nu-
cleus or the cytoplasm. Indeed, silencing can be
triggered by various processes mediated by RNA
molecules that contain 20-30 nucleotides. The
process is initiated by the recognition and cleavage
of dsRNA into small interfering RNA (siRNA)
molecules of 21-26 nucleotides by an enzyme
called Dicer (DCR, or Dicer-like). siRNAs com-
prise two strands: a guide strand and a passenger
strand. The silencing complex, which cleaves and
inactivates mRNA, is activated by the binding of
DICER+siRNA to the RNA-induced silencing
complex (RISC) where the argonaute protein
(Ago) is the catalytic component. Thus, the guide
strand of the siRNA directs the cleavage process
and facilitates the binding of mRNA to the RISC
complex, whereas the passenger strand is de-
stroyed (Fig. 1). The action of the complex inacti-
vates more than 90% of the mRNA molecules. The
efficiency of silencing is greater when the inocu-
lated dsRNA leads to the formation of an RNA
hairpin (hpRNA) spaced with an intron
(BAUMBERGER & BAULCOMBE 2005; QI et al. 2005;
BRODERSEN & VOINNET 2009; GHILDIYAL &
ZAMORE 2009; RIEDMANN & SCHWENTNER 2010;
PERRIMON et al. 2010; KATOCH & THAKUR 2013;
BURAND & HUNTER 2013).

The RNAi experiments have involved the fol-
lowing types of synthetic RNAi molecules: small
RNA (small hairpin RNAs, shRNAs), micro-RNA
(small hairpin microRNAs, shmiRNAs), and long
molecules of dsRNA. Further details have been re-
ported by ECHEVERRI and PERRIMON (2006), LEE
and KUMAR (2009), SIOMI and SIOMI (2009), and
BRODERSEN and VOINNET (2009).

Incorporation of dsRNA into cells

Two mechanisms of dsRNA incorporation into
cells have been identified. The first is mediated by
two transmembrane proteins, i.e., SID-1 and SID-2
(defective systemic RNAi). The former is essential
and is responsible for the systemic spread of RNAi,
whereas the latter is specific to the gut and, to-
gether with SID1, facilitates the spread of RNAi
from the environment (FEINBERG & HUNTER 2003;
WINSTON et al. 2007; MCEWAN et al. 2012). The
second mechanism involves receptor-mediated
endocytosis-specific RNAi (JOSE & HUNTER 2007;
SALEH et al. 2006; ULVILA et al. 2006; HUVENNE
& SMAGGHE 2010; GU & KNIPPLE 2013).

The potential

The possibility of applying gene silencing to in-
sect pest control was demonstrated by the oral ad-
ministration of dsRNA (ARAUJO et al. 2006;
TURNER et al. 2006), which significantly reduced
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the expression levels of specific genes in the hem-
ipteran Rhodnius prolixus (one of the main vectors
of Trypanosoma cruzi, which is the causative agent
of Chagas disease) and the lepidopteran Epiphyas
postvittana (the light brown apple moth). Experi-
ments using E. postvittana demonstrated the pres-
ence of ingested dsRNA in larval cells or other
tissues and in the adults produced, i.e., oral ad-
ministration induced the formation of systemic
RNAi. Gene silencing using dsRNA has also been
demonstrated in several insect orders, including
Diptera (LI et al. 2011; COY et al. 2012; KUMAR et al.
2013; SINGH et al. 2013), Coleoptera (ZHAO et al.
2008; ZHU et al. 2011; RANGASAMY & SIEGFRIED
2012; CAO et al. 2012; RAMASESHADRI et al. 2013;
WANG et al. 2013), Hymenoptera (WANG et al. 2010;
HUNT et al. 2011; CHOI et al. 2012), Orthoptera
(DONG & FRIEDRICH 2005; ZHANG et al. 2011),
Lepidoptera (TERENIUS et al. 2007; GRIEBLER et al.

2008; TIAN et al. 2009; MAO et al. 2011; GONG et al.
2011, 2013; KUMAR et al. 2012; ASOKAN et al.
2012; TANG et al. 2012; WANG et al. 2013), Ho-
moptera (CHEN et al. 2010), Hemiptera (ROSA et al.
2012), and Isoptera (ZHOU et al. 2008).

The difficulties that need to be overcome to
transform gene silencing into an effective pest
control practice include the transfer of dsRNA into
the target cells, selection of target genes, a broader
understanding of the mechanisms involved with
the silencing process, and knowledge of how these
aspects are associated with differences in the ef-
fects on different species.

Delivery of dsRNA

The delivery of exogenous dsRNA into the cells
of several eukaryotic species triggers a mechanism
that causes the rapid inactivation of mRNA mole-
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Fig. 1. The general aspects of siRNA pathways of RNA interference. Adapted from WILSON & DOUDNA 2013). Ago:
Argonaute protein, dsRNA: Double-stranded RNA, dsRBP: Double-stranded RNA binding protein, mRNA: Messenger
Ribonucleic Acid, RISC: RNA-induced silencing complex.



cules containing nucleotide sequences comple-
mentary to the introduced sequence. The transport
of dsRNA (delivery) into target cells is the limiting
factor in the development and application of si-
lencing techniques as an effective insect control
strategy (ZHANG et al. 2013; YU et al. 2013).

Several methods have been tested in experi-
ments with insects such as micro-injection, im-
mersion, ingestion (artificial feeding systems and
expression by transgenic plants). Artificial feed-
ing systems involve the ingestion of artificial diets,
which include dsRNA expressed in bacteria or
synthesized in vitro and mixed with food. In par-
ticular, the transfer of dsRNA via feeding is the
most attractive option and it has the greatest poten-
tial for field applications (ARAUJO et al. 2006;
BAUM et al. 2007; CHEN et al. 2010; TIAN et al.
2009).

The presence of chitin in the exoskeleton of in-
sects hinders absorption via the outer surface, but
the peritrophic membrane maintains direct contact
with the external environment. The cells responsi-
ble for the absorption of food in the lumen can ab-
sorb dsRNA and this is the most promising method
of dsRNA transfer from the external environment
into insect cells (VOINNET 2005; WHANGBO &
HUNTER 2008; HUVENNE & SMAGGHE 2010).

The transfer of dsRNA to target species via in-
gestion is a method with many advantages, such as
low cost and ease of preparation, while it is less in-
vasive and easier to use in smaller species. How-
ever, the efficiency of the process depends on the
continuous supply of adequate concentrations of
dsRNA (ARAUJO et al. 2006; TIAN et al. 2009;
WALSHE et al. 2009; YU et al. 2013).The limita-
tions of the application of this method include dif-
ficulties in defining the required amount of dsRNA
to obtain an adequate response and the effects of
the midgut environment on their action (RAJAGOPAL
et al. 2002; ARAUJO et al. 2006; TURNER et al.
2006; SURAKASI et al. 2011; LI et al. 2013).

During ingestion, insects can be fed a mixed diet
that contains either synthetic dsRNA (WHYARD et al.
2009) or food supplemented with Escherichia coli
cells that express dsRNA (TIMMONS & FIRE 1998;
TIMMONS et al. 2001; TURNER et al. 2006; BAUM
et al. 2007; TIAN et al. 2009; SURAKASI et al. 2011).
For sucking insects, dsRNA could be provided in
solution (CLEMENS et al. 2000; WHYARD et al.
2009). Another option for agricultural applica-
tions is the construction of transgenic plants that
express dsRNA targeted at specific pests (MAO et al.
2011; PITINO et al. 2011; ZHA et al. 2011; KUNG
et al. 2012).

In addition to high costs, the ingestion of syn-
thetic dsRNA by insects still presents several diffi-
culties, particularly providing the appropriate
concentrations to obtain positive results. The use

of E. coli strain HT115 is an inexpensive means of
expressing and producing large amounts of
dsRNA. Furthermore, the ingestion of bacteria
does not damage the animals, thereby ensuring
that death is caused by gene silencing rather than
by the treatment process (TIMMONS et al. 2001;
TIAN et al. 2009; LI et al. 2011). In addition, vec-
tors that express dsRNA for different genes simul-
taneously could increase the efficiency of target
species control (MCINTYRE et al. 2011; WANG et al.
2013; ATTASART et al. 2013).

The use of transformed plants in agriculture
(plant-mediated RNAi) is the main method for
continuous transfer because it allows dsRNA to
combat the particular species that feed on plant or-
gans such as roots. Several studies have demon-
strated that the dsRNA produced by transgenic
plants is absorbed by the midgut and it reduces the
expression of the target genes. Some studies have
shown that this approach can achieve a higher de-
gree of specificity than that obtained with Bt plants
(BAUM et al. 2007; MAO et al. 2007, 2011; PITINO
et al. 2011; KUMAR et al. 2012; KUNG et al. 2012).

Two other studies involving the use of ingested
dsRNA should also be mentioned. First, chloro-
plasts of the microalgae Chlamydomonas were
transformed to express dsRNA complementary to
the 3HKT gene, which was then used for mosquito
control (KUMAR et al. 2013). This approach facili-
tates the control of aquatic insects, especially dis-
ease vectors. Second, the use of nanoparticles in
the preparation of dsRNA inocula has been re-
ported to improve the stability and efficiency of
RNAi (ZHANG et al. 2010).

Variation in results

Several studies have reported differences in the
intensity of the response among the insect species
analyzed, thereby demonstrating that the suppres-
sion process is affected by the intrinsic properties
of each species, as well as the genes used and the
target tissue. In some species, the response is ex-
cellent and it persists for several generations of
germ cells (BELLÉS 2010; LIU & KAUFMAN 2004;
LYNCH & DESPLAN 2006; RONCO et al. 2008;
MITO et al. 2011), whereas the results are not satis-
factory in some species of Diptera and Lepidoptera
(TERENIUS et al. 2011). The silencing process is
fairly constant, but the mechanisms and the pro-
teins involved differ among species (HUVENNE &
SMAGGHE 2010). The dose required for a signifi-
cant response using the micro-injection method
also varies among species (HIRAI et al. 2004;
TERENIUS et al. 2007) and similar results were ob-
served in experiments where dsRNA was adminis-
tered via ingestion (YANG et al. 2009; BAUTISTA
et al. 2009; KHAJURIA et al. 2010). Additional
studies are required to establish a better relation-
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ship between the concentration and intensity of si-
lencing dsRNA, as well as the effects of the
process on the viability of the target species (IGA
& SMAGGHE 2010; TERENIUS et al. 2011). Some
studies suggest a possible relationship between the
amount of dsRNA used and the level of silencing
obtained (KUMAR et al. 2009).

Variation in the midgut chemical conditions will
determine the species in which the transfer of
dsRNA via food may work successfully. In some
species, the results are negative. The midgut envi-
ronment contains several digestive enzymes, in-
cluding nucleases that digest nucleic acids. Thus,
the efficiency of the process demands that the
dsRNA must pass through the intestine intact be-
fore it is absorbed by cells. Therefore, the ability to
digest dsRNA is a problem that must be solved to
ensure the effective utilization of silencing to con-
trol pests on a large scale. Furthermore, evalua-
tions should also test the effects of variation in
intestinal pH among species (HAKIM et al. 2010;
KATOCH & THAKUR 2013). Nanoparticles could
increase the half-life of dsRNA by protecting the
molecules (ZHANG et al. 2010; HE et al. 2013).
The use of nanoparticles for bioproduct protection
has been demonstrated successfully in food pro-
duction (DURÁN & MARCATO 2012) and in bio-
logical insecticides (PÉREZ-DE-LUQUE & RUBIALES
2009; GHORMADE et al. 2011; KHATER 2012).
Therefore, research in this area could yield posi-
tive results and facilitate the development of effi-
cient methods for silencing via the ingestion of
dsRNA.

Selection of target genes

The selectivity of RNAi is attributable to the
identity of segments with specific nucleotides of
the target gene. WHYARD et al. (2009) showed that
the application of dsRNA for the enzyme V-ATPse
produced positive results only in the species from
which the target sequence was obtained. This
specificity has been highlighted in several studies
(DOENCH & SHARP 2004; MASLIAH et al. 2013;
GU & KNIPPLE 2013).

The choice and selection of the target gene used
in the silencing process is also a key step that en-
sures specificity, so careful selection of the target
gene is necessary. The size of the dsRNA can also
affect the efficiency of the results (YU et al. 2013;
GU & KNIPPLE 2013). Experiments using 130 dif-
ferent genes have been performed in Lepidoptera
and only 38% of these obtained high levels of si-
lencing (TERENIUS et al. 2011). Similarly, the re-
sults of experiments with 290 different genes in
beetles indicated varying levels of efficiency
(BAUM et al. 2007).

The many factors that may affect the efficiency
of RNAi in the control of insect pests include the
concentration of dsRNA, the strength of the re-
sponse, and the length of the sequence. In general,
larger RNA molecules with higher similarity to the
target mRNA are more efficient. The process is
also affected by the type of cell into which the
dsRNA is inserted and the enzymes involved in
their recognition. Another important point is the
possible instability of dsRNA and its degradation
after internalization (SIOUD 2007; KIM et al. 2005;
SIOLAS et al. 2005; AKHTAR & BENTER 2007;
JERE et al. 2009).

Final comments

Regardless of the possibilities of using gene si-
lencing for insect pest control, its application in the
field will depend on a better understanding of the
mechanisms involved with the overall process.
This involves selecting genes that are essential for
the survival of the target species and that are highly
susceptible to the silencing process. Furthermore,
it will be necessary to obtain a better understand-
ing of the mechanisms involved with the process-
ing and activation process in different species, or
groups of organisms (ZHU 2013; YU et al. 2013; LI
et al. 2013; GU & KNIPPLE 2013; BURAND &
HUNTER 2013).

To facilitate the study and evaluation of gene si-
lencing as an efficient tool for controlling agricul-
tural pests, standardized experimental protocols
need to be established for groups of target species
(particularly via ingestion), allowing for the com-
parison of results. According to HUVENNE &
SMAGGE (2010), the main areas that can affect the
efficiency of silencing, which should be examined
more closely, are the concentration of dsRNA, the
nucleotide sequence of the dsRNA, the dsRNA
length, the persistence of silencing, and the life
stage of the target species in which silencing is
more efficient.

The histories of strategies that have been devel-
oped to reduce losses in agricultural production al-
most always include considerable early success,
followed by the development of resistance in some
species or strains. The evolution of resistance to
chemical insecticides has been reviewed previ-
ously (GEORGHIOU & LAGUNES-TEJEDA 1991).
This phenomenon has also occurred with herbi-
cides (NEVE 2007; POWLES & YU 2010) and anti-
biotics (DAVIES & DAVIES 2010), and it is
happening at present with insecticides based on
Bacillus thuringiensis.

Therefore, we must accept that part of what we
produce will always be consumed by our competi-
tors (pests), irrespective of the quality of our crop
defense strategies. Thus, we must analyze all of the
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steps involved with the production process to re-
duce agricultural losses, i.e., from planting until
the arrival of food at the consumer’s table, and
identify methods that minimize losses during each
step. After many years of this relationship (the
arms race), it is time to accept that it is impossible
to produce food on a large scale without a portion
being consumed by other species.

To develop more efficient strategies based on
gene silencing, we must remember that its success
as a defense strategy is limited by the responsive-
ness of the target species, i.e., the development of
new defense strategies (resistance). This response
cannot be predicted but the coevolutionary process
means that it will surely happen.
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