Independent, Non-IGF-I Mediated, GH Action on Estradiol Secretion by Prehierarchical Ovarian Follicles in Chicken. *In vitro* Study*

Anna HRABIA, Andrzej SECHMAN and Janusz RZĄSA

Accepted May 22, 2012

Information concerning the role of growth hormone (GH) in the local regulation of ovarian activity in birds is limited. Therefore, the aim of the present study was to determine whether in the domestic hen GH influences *in vitro* estradiol secretion by prehierarchical ovarian follicles. Moreover, the interaction between GH and IGF-I on estradiol secretion was examined. Small white (1-4 mm), large white (4-6 mm) and yellowish (6-8 mm) ovarian follicles were isolated at the stage of 2h after ovulation. In the first experiment (*n*=8 hens), whole follicles, *n=6* dose/ovary; large white, *n=1* dose/ovary and yellowish, *n=1* dose/ovary) were incubated for 24 h at 38°C in a medium supplemented with 0 (control), 1, 10 or 100 ng/ml of chicken GH (cGH). In the second experiment (*n=6* hens), follicles were incubated in the same way in a medium with 0 (control), 10 ng/ml cGH, 25 ng/ml human IGF-I or cGH+hIGF-I (10 ng/ml+25 ng/ml). Following incubation the estradiol concentration was determined in media (RIA) and protein in the tissues of the follicular wall (Lowry). The secretion of estradiol was expressed per milligram of protein. The experiments revealed that both GH and IGF-I stimulated estradiol secretion by examined chicken ovarian follicles. The simultaneous addition of cGH and hIGF-I increased estradiol secretion by ovarian follicles as compared to the control. These hormones added together did not have an additive effect when compared to their separate actions. The results obtained suggest that both GH and IGF-I are important stimulators of estradiol production in chicken nonhierarchical ovarian follicles. We propose independent, non-IGF-I-mediated GH action on estradiol secretion.

Key words: GH, IGF-I, estradiol secretion, ovary, chicken.

Anna HRABIA, Andrzej SECHMAN, Janusz RZĄSA, Department of Animal Physiology and Endocrinology, University of Agriculture Kraków, Mickiewicza 24/28, 30-059 Kraków, Poland. E-mail: rhabia@cyf.ug.edu.pl, annahrabia@hotmail.com

In the ovary of a laying hen the growing follicles are represented by numerous prehierarchical white and yellowish follicles with a diameter >1-8 mm and five to seven yellow preovulatory ones with a diameter >8-36 mm arranged in a size hierarchy. Steroidogenic activity of follicles changes during their growth and maturation. In white and yellowish follicles the granulosa layer is steroidogenically incompetent whereas the theca is the source of ovarian estradiol. In yellow follicles both theca and granulosa layer are steroidogenically active and theca is a source of estradiol while granulosa is a source of progesterone (HRABIA et al. 2004; RZĄSA et al. 2009). The regulation of ovarian steroidogenesis is multihormonal. In addition to pituitary-derived gonadotropins, which are essential for steroid production, the locally synthesised regulators such as growth factors (see review ONAGBESAN et al. 2009), biogenic amines (RZĄSA & PACZOSKA-ELIASIEWICZ 2000) and steroids (HRABIA et al. 2008a) are also involved in this process. In the last few years the presence of growth hormone (GH) (HRABIA et al. 2008b) and its receptors (HECK et al. 2003; LEBEDEVA et al. 2004; HRABIA et al. 2008b) has been documented in the chicken ovary, which suggests that this organ is a target site for endocrine and autocrine/paracrine actions of GH.

In vertebrates GH exerts multiple effects on diverse physiological processes. Among them there is a regulation of reproductive functions (see review HULL & HARVEY 2000, 2001; BACHELOT et al. 2002; MEINHARDT & HO 2006; ROUSSEAU & DUFOUR 2007). At the cellular level, GH activities include gene transcription, mitogenesis, cytoskeletal reorganization and cell migration (see re-

*Supported by grant DS-3243/KFiEZ.
were incubated in a 24-well or yel-

... and are considered

... chicken ovary during sexual maturation (H

... steroid content, proliferation and apoptosis in the

... our recent study showed

... an increase in the number of small ovarian follicles after GH administration to the laying hens. However, the role of GH in the chicken ovarian steroidogen-

... is not elucidated. Accordingly, in the present in-

... the role of GH in the chicken ovarian steroidogene-

... of GH in the reproductive functions is poorly known

... Williams et al. 2011). Moreover, a previous experiment by

... lowish ovarian follicles has been examined.

... by isolated chicken prehierarchical (white and yel-

... investigation, the effect of GH on estradiol secretion

... is not elucidated. Accordingly, in the present in-

... the effect of increasing doses of GH on estra-

... of variation were 5.7% and 6.4%

... estradiol secretion by chicken nonhierar-

... test. Values are expressed as the mean ± SEM from

... estradiol concentration in the medium was meas-

... Estradiol assay

... Estradiol concentration in the medium was measured

... and tissues of the follicular wall for protein de-

... Incubation procedure

... In the first experiment (n=8 chickens), to exam-

... of estradiol secretion, whole follicles were randomly assigned

... and tissues of the follicular wall for protein de-

... Incubation procedure

... In the first experiment (n=8 chickens), to exam-

... of estradiol secretion, whole follicles were randomly assigned

... of GH in the reproductive functions is poorly known

... and its role in the local regulation of ovarian activity

... and its role in the local regulation of ovarian activity

... view Pilecka et al. (2007). In birds, participation

... and its role in the local regulation of ovarian activity

... and its role in the local regulation of ovarian activity

... effect of GH on estradiol secretion by chicken prehierarchi-

... estradiol secretion has been shown (see review Onagbesan et al. 2009). There are suggestions that IGFs are the lo-

... estradiol secretion by chicken nonhierarchical ovarian follicles has also been assessed.

Material and Methods

All procedures were performed in accordance

... with the research protocols approved by the Local Animal Ethics Committee in Kraków, Poland (No. 50/OP/2004).

Animals

Experiments were carried out on Hy-Line laying hens (n=14) at the age of 27 (Exp. 1) or 30 (Exp. 2) weeks, caged individually under a photoperiod of 14L:10D (light on at 0800 h) with free access to food and water. Time of oviposition was recorded daily at 15 min intervals between 0800 h and 1500 h, and once at 1700 h. Birds used in the experiments, characterized by regular sequences of at least 20 eggs per clutch were decapitated 2 h after ovulation. From the ovaries the following prehierarchical follicles were isolated: small white (1-4 mm in diame-

... Incubation procedure

... In the first experiment (n=8 chickens), to exam-

... effect of increasing doses of GH on estra-

... cGH at a dose of 0 (control), 1, 10 or 100 ng/ml and 0.05 g/ml BSA and 2 μl/ml antibiotic-antimycotic solution (10000 units penicill-

... estradiol secretion, follicles were incubated for 24 h in a medium without hormone (control), or a medium supplemented with 10 ng/ml of cGH, 25 ng/ml of human IGF-I, or cGH combined with hIGF-I at the above concentrations. The dose of cGH was established on the basis of the results of the first experi-

... Following incubation, both in Exp. 1 and Exp. 2 the medium was collected for estradiol determina-

... estradiol assay

... Estradiol concentration in the medium was measured

... Estradiol assay

... Estradiol concentration in the medium was measured

... Estradiol assay

... Estradiol assay
at a dose of 100 ng/ml significantly elevated estradiol secretion by small white follicles (49%) (Fig. 1).

Effect of hIGF-I on cGH-stimulated in vitro estradiol secretion by whole prehierarchical ovarian follicles (Exp. 2)

Under the control conditions the highest secretion of estradiol (pg/mg protein/24 h) was by small white follicles (468 ± 33) and the lowest was by yellowish follicles (152 ± 10) (Fig. 2). The addition of cGH into the culture medium significantly
increased basal estradiol secretion by each class of examined follicles: small white by 49%, large white by 34% and yellowish by 89.6%. hIGF-I increased estradiol secretion by small white follicles by 43% and yellowish follicles by 62%. Treatment of the follicles with a combination of cGH+hIGF-I significantly stimulated estradiol secretion by each group of the follicles: 40%, 61% and 146%, respectively for small white, large white and yellowish in comparison to control. As compared to individual effects of cGH and hIGF-I, combined treatment with cGH+hIGF-I did not intensify estradiol secretion by examined ovarian follicles (Fig. 2).

Discussion

The results of the present investigation reveal that in vitro estradiol secretion expressed per mg of protein by the prehierarchical follicles (1-8 mm) decreases during follicular growth. These data are consistent with previous findings (HRABIA et al. 2004; LEE & BAHR 1994) and correlate with changes in the examined steroid level in the wall of follicles (RZĄSA et al. 2002).

The first finding of the present study was that all used doses of cGH were effective and had stimulatory action on estradiol secretion by nonhierarchical follicles. The doses of 1 ng/ml and 10 ng/ml of cGH increased estradiol secretion by all groups of follicles. The highest dose of cGH, i.e. 100 ng/ml, elevated estradiol secretion by small and large white follicles. The stimulating effect of cGH on estradiol secretion observed in this work is in agreement with the previous findings (HRABIA et al. 1995). Hence, these observations indicate that the effect of GH on ovarian steroidogenesis may be dependent directly, at least in part, by stimulation of IGF-I production (YOSHIMURA et al. 1994), the effect of IGF-I on basal and cGH-stimulated estradiol secretion by nonhierarchical follicles of the chicken was also examined in this study. It was found that both cGH and hIGF-I act as stimulatory factors on estradiol secretion by chicken prehierarchical follicles. Contrary to the present authors’ observations in white nonhierarchical follicles, Onagbesan et al. (ONAGBESAN et al. 1994, 1999) showed an inhibiting effect of IGF-I on estradiol secretion by theca cells of yellow hierarchical follicles in chickens. The opposite effect of IGF-I could be a result of different sizes and the maturational stage of the follicles. Some studies performed in vitro on porcine ovarian cells revealed stimulatory action of IGF-I on estradiol secretion (KOŁODZIEJCZYK et al. 2001, 2003; GREGORASZCZUK et al. 2007).

The most important finding of the present investigation was that cGH and hIGF-I added together into the incubation medium had no additive effect on estradiol secretion by prehierarchical follicles. The lack of interaction between these hormones suggests that they act on chicken prehierarchical follicles directly by their own receptors. The IGF-I-independent mechanism of GH action in the ovary was also strongly suggested in the mammalian ovary (see review HULL & HARVEY 2001; BACHELOT et al. 2002).

The GH and IGF-I steroidogenic action might be associated with their effects on the synthesis and/or activity of key enzymes responsible for estradiol synthesis, including aromatase. To our knowledge there are no data indicating GH effects on aromatase activity in the small ovarian follicles in avian species, whereas an inhibiting action of IGF-I on both basal and LH-induced aromatase activity was revealed (ONAGBESAN et al. 1994). On the other hand, GH stimulated the activity of aromatase, for instance, in the ovaries of women (TAPANAINEN et al. 1992), pigs (RAK et al. 2008) and sea trout (SINGH & THOMAS 1993). It was also observed that IGF-I present in a culture medium stimulated aromatase activity and gene expression in vitellogenic follicles in carp (PAUL et al. 2010).

The stimulating estradiol secretion action of GH and IGF-I may also reflect its induction of cell proliferation. We have previously reported that GH exhibits proliferating activity in the chicken small ovarian follicles which predominantly produce estradiol (HRABIA et al. 2011). On the other hand, the stimulating proliferation effect of IGF-I in the chicken ovary is well documented (see review ONAGBESAN et al. 2009).

Taking into consideration the results of the current study and our former data (HRABIA et al. 2011) we suggest that both GH and IGF-I are important stimulators of estradiol production in chicken nonhierarchical ovarian follicles. We propose an independent, non-IGF-I-mediated GH action on estradiol secretion.

Acknowledgement

The authors wish to thank Prof. Arieh GERTLER (Institute of Biochemistry, Food Science and Nu-
trition, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel) for the generous gift of chicken GH and human IGF-I.

References

