Karyotype Analysis of Three Weevil Species from the Genera *Brachysomus* (Boheman, 1845) and *Strophosoma* Billberg, 1820 (Coleoptera, Curculionidae)*

Milada HOLECOVÁ, Maria ROŻEK and Dorota LACHOWSKA

Accepted October 10, 2007

HOLECOVÁ M., ROŽEK M., LACHOWSKA D. 2008. Karyotype analysis of three weevil species from the genera *Brachysomus* (Boheman, 1845) and *Strophosoma* Billberg, 1820 (Coleoptera, Curculionidae). Folia biol. (Kraków) **56**: 25-29.

Karyotypes of three weevil species, viz. *Brachysomus dispar* $(2n=22, n \sigma=10+Xy_p)$, *Brachysomus hirtus* (3n=33, n q=10+X) and *Strophosoma faber* $(2n=22, n \sigma=10+Xy_p)$ belonging to the tribes Sciaphilini and Brachyderini, were studied using the C-banding technique. The karyotype structures of the two bisexual and one parthenogenetic species are described for the first time. Most chromosomes are meta- or submetacentric. In the two species of the genus *Brachysomus*, the chromosomes resemble one another in having a rather small amount of heterochromatin restricted to the pericentromeric region, visible as dark stained blocks mainly during the early stages of nuclear division. Larger bands at mitotic metaphase and diakinesis occur only in *Strophosoma faber*. Geographic parthenogenesis in *Brachysomus hirtus* is briefly discussed.

Key words: Coleoptera, Curculionidae, Brachysomus, Strophosoma, karyotype, C-bands.

Milada HOLECOVÁ, Department of Zoology, Comenius University, Mlynská dolina B-1, 842-15 Bratislava, Slovakia E-mail: holecova@fns.uniba.sk Maria ROŻEK, Dorota LACHOWSKA, Department of Experimental Zoology, Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland. E-mail: rozek@isez.pan.krakow.pl

lachowska@isez.pan.krakow.pl

The genus *Brachysomus* comprises about 48 apterous, terricolous species of minute adelognathan weevils distributed mainly in the Western Palaearctic. Their ranges are usually geographically restricted. Numerous species live in the Balcans. A considerable number of species are concentrated along the lower altitudes of the Carpathians, many are very local, being restricted to particular calcareous ranges or steppe and forest-steppe refuges in Central and Eastern Europe. Several endemic species are found only in Asia Minor and the Caucasus, four Brachysomus species inhabit the mountains of Crimea. Only B. echinatus has a Holarctic range. Second in distribution size is B. hirtus, occuring in southern parts of Europe to the Northwestern Caucasus. B. echinatus and B. hirtus have vast ranges owing to the expansions of parthenogenetic populations. B. echinatus is known only as a parthenogenetic form, while a bisexual

form of *B. hirtus* was discovered in the Dinaric Alps (FORMÁNEK 1905). No parthenogenetic form of any of the other species of *Brachysomus* is known. All members of this group are probably polyphagous, possibly even saprophagous, feeding on decaying leaves. Many have cryptic life habits. Several species have been very recently discovered in Europe, or resurrected from synonymy after revisions of museal material (KOŠTÁL 1991a, b, 1992; BENEDIKT 2001; WANAT & MAZUR 2005a; YUNAKOV 2006). The cytogenetic makeup of *Brachysomus* is poorly known. So far the karyotypes of only 2 species of this genus, *B. echinatus* and *B. setiger*, have been studied (LACHOWSKA *et al.* 2006a and in press).

The genus *Strophosoma* includes over 45 species inhabiting the Palaearctic region, mainly the Iberian Peninsula and the western part of North Africa. Six species have been found to date in

^{*}Supported by VEGA (Scientific Grant Agency of the Ministry of Education and the Slovak Academy of Sciences), grant numbers 1/3277/06, 1/2342/05 to Milada HOLECOVÁ and Polish Ministry of Science and Information Technologies, grant number 3P04C 085 25 to Dorota LACHOWSKA.

Central Europe (SMRECZYŃSKI 1966; DIECKMANN 1980; LUCHT 1987). Adult beetles are mostly generalists feeding on various herbaceous and woody plants although several species are associated with plants of the genera *Calhuna* and *Erica*. Alpha-karyological studies concerning this genus have been carried out only on the parthenogenetic triploid species *Strophosoma melanogrammum* and the bisexual species *S. capitatum* (SUOMALAINEN 1940a; 1940b; 1947; 1954; 1966). C-banding patterns in chromosomes of the aforementioned species have been described in previous papers (ROŻEK & HOLE-COVÁ 2000; LACHOWSKA *et al.* in press).

The present paper is a continuation of investigations on the karyology of Palaearctic weevils. The authors report on the karyotype of *Brachysomus dispar*, *B. hirtus* and *Strophosoma faber* using the C-banding technique.

Material and Method

Weevil adults were collected in Slovakia in 2006 and 2007 (Table 1). The species were diagnosed

Table 1

Chromosomally examined species of weevils

Tribe Species	Geographic source and date of collection
Brachyderini	· · · · · · · · · · · · · · · · · · ·
Brachysomus dispar Penecke, 1910	C Slovakia, Strážovské vrchy Mts., Strážov Nature Reserve, June 9 and 16, 2006
Brachysomus hirtus (Boheman, 1845)	SW Slovakia, Malé Karpaty Mts., Naháč, June 1 and 6, 2007
Sciaphilini	
<i>Strophosoma faber</i> (Herbst, 1795)	SW Slovakia, Borská nížina lowland, Pernek, July 7, 2006

according to ALONZO-ZARAZAGA and LYAL (1999) and WANAT and MOKRZYCKI (2005b). Vouchers were deposited in the Institute of Systematics and Evolution of Animals PAS. Gonads (eight to ten from each species) were dissected under a stereomicroscope in several drops of hypotonic 0.9 % sodium citrate solution containing 0.005% colchicine. The gonads were transferred into a small volume of the same solution and incubated for 30-45 min at room temperature. Then the gonads were fixed according to the method described by ROŻEK (1994) with minor modification (ROŻEK & LACHOWSKA 2001). C-banding was performed using the procedure described by SUMNER (1990) with some modifications (LACHOWSKA et al. 2006b). The slides were stained with 4% Giemsa phosphate buffer (pH 6.8) for 10 to 20 min. Evaluation of chromosome morphology was based on ten mitotic metaphases (Table 2). Chromosome lengths were calculated as the percentage of the total chromosome length of the haploid set (% TCL), which also includes the sex chromosome. Chromosomes were classified according to LEVAN et al. (1964). Spermatogonial metaphase, meiotic stages and interphase nuclei were analyzed and photographed with a Nikon Eclipse 400 light microscope and CCD DS-U1 camera (Nikon), using the software Lucia Image version 5.0 (Laboratory Imaging, Prague, Czech Republic).

Results and Discussion

The karyotypes of the two bisexual and one parthenogenetic species are characterized by the prevalence of meta- and submetacentric chromosomes, a condition which is almost the rule in the karyotypic architecture of weevils (LACHOWSKA *et al.* 2006a).

Table 2

Relative length	(%TCL) and	l centromeric	index (AR)) of particular	chromosome pairs
-----------------	------------	---------------	------------	-----------------	------------------

Pair No.	Brachysomus dispar $- \circ$ 2n = 22 $n = Xy_p$		Strophosoma faber $- \sigma^{*}$ 2n = 22 $n = Xy_{p}$		Pair No.	Brachysomi parthenoger 3n =	<i>us hirtus</i> – ♀ netic species = 33
	mitotic metaphase		mitotic metaphase			mitotic metaphase	
	%TCL	AR	%TCL	AR		%TCL	AR
1	15.04	1.27	14.95	1.55	1	13.68	4.48
2	11.72	1.08	12.87	1.58	2	13.21	3.17
3	11.52	1.16	10.09	1.03	3	11.54	3.23
4	9.90	1.20	9.38	1.05	4	10.84	1.28
5	8.11	1.05	9.03	1.10	5	9.51	1.27
6	7.09	1.02	8.96	1.11	6	8.52	1.01
7	6.94	1.07	7.45	1.01	7	7.36	1.44
8	6.28	1.03	6.94	1.09	8	7.19	1.21
9	5.12	2.76	6.62	1.15	9	6.26	1.45
10	2.78	_	4.54	_	10	6.14	1.60
Х	13.27	2.96	7.00	1.05	11	5.74	1.41
y	2.23	-	2.14	_	_	_	-

Figs 1-3. Chromosomes of *Brachysomus dispar* after C-banding. Fig. 1. Mitotic metaphase and karyotype. Fig. 2. Diplotene, small arrows show short segments of heterochromatin, large arrow shows heteropycnotic sex-chromosomes. Fig. 3. Metaphase I, star shows Xy_p association. Fig. 4. Mitotic metaphase and haploid set of chromosomes of *Brachysomus hirtus* after C-banding. Figs 5-7. Chromosomes of *Strophosoma faber* after C-banding. Fig. 5. Mitotic metaphase and karyotype. Fig. 6. Pachytene, small arrows show wide segments of heterochromatin, large arrow shows the heteropycnotic sex-chromosomes. Fig. 7. Diakinesis, star shows Xy_p association. Bar = 10 μ m.

Brachysomus dispar (2n=22, no=10+Xy_p). The male diploid complement consists of 20 autosomes and X and y sex chromosomes. The karyotype is symmetric with chromosomes forming a series decreasing in size. Eight pairs of autosomes are metacentric, one is submetacentric, and one acrocentric. The X chromosome is metacentric and similar in size to the longest autosomes, whereas the y chromosome is dot-like (Fig. 1). The relative length of the autosomes is 2.23%-15.04% (Table 2). During male meiotic stages autosomal bivalents are connected by one terminal or intersticial chiasmata forming rod-shaped elements, the sex chromosomes form non-chiasmatic associations of the parachute type (Fig. 3). All chromosomes display short bands of heterochromatin visible during the early stages of nuclear division but are undetectable at spermatogonial metaphase (Fig. 2).

The karyotype of *Brachysomus dispar* is similar to its congeneric species *Brachysomus setiger* examined by LACHOWSKA *et al.* (2006a). The congeners are characterized by the same diploid complement of 22 chromosomes and the meioformula $n=10+Xy_p$ which seems ancestral for all adelognathan curculionids (SMITH & VIRKKI 1978; SHARMA *et al.* 1980; LACHOWSKA *et al.* 1998) and confirms the karyological conservatism of the examined genus. Both studied species have a symmetric karyotype with a predominance of metaand submetacentric chromosomes; sex determination as well as the small amount of heterochromatin are visible only during prophase stages.

Brachysomus hirtus (3n=33). During oogonial division in this parthenogenetic species 27, 28, 29, 30 or 33 chromosomes were observed, but the haploid set consists of 11 chromosomes. The karyotype is symmetric with a majority of metacentric (pairs 4th-11th) and submetacentric chromosomes (1st-3rd) of relative length ranging between 5.74%-13.68% (Fig. 4, Table 2). Sex chromosomes are likewise three in number, however, they could not be distinguished from the autosomes. C bands were not observed in the chromosomes of mitotic metaphase plates.

According to the present state of knowledge a haploid number of n=11 occurs in bisexual congeners of *Brachysomus hirtus* (LACHOWSKA *et al.* 2006a). The present study confirms that triploidy is the most common level of ploidy within Curculionidae, as well as in other insect groups having apomictic parthenogenesis. Excluding the Polish and Finnish populations of Polydrusus mollis and the Japanese curculionid Scepticus insularis with 22 chromosomes, parthenogenetic weevils are comprised of 53 triploids having 33 or 30 chromosomes, 18 tetraploids with 44 chromosomes, 6 pentaploids with 55 chromosomes, three hexaploids carrying 66 chromosomes and one decaploid (SAURA et al. 1993; LACHOWSKA et al. in press). Substantial evidence shows that related bisexual and parthenogenetic forms have different geographic distributional patterns. Parthenogens quite often show a tendency to inhabit "marginal" environments, including high latitudes and altitudes, xeric environments and islands, when compared to their close bisexual counterparts, representing the socalled "geographic parthenogenesis", first noted by VANDEL (1928). This pattern is often assumed to reflect an association between parthenogenesis and environments that were strongly affected by the Late Pleistocene glacial cycles (SUOMALAINEN et al. 1987; KOROTYAEV & MELESHKO 1995; NOK-KALA et al. in press). A characteristic example of geographic parthenogenesis is Brachysomus hirtus analysed in the present paper. Parthenogenetic races of this xerothermophilous species inhabit territory from England to the Northwestern Caucasus, while its bisexual form lives in a restricted area and at higher altitudes (YUNAKOV 2006).

Strophosoma faber (2n=22, no=10+Xy_p). The symmetric karyotype is composed of 9 pairs of metacentric and one pair of acrocentric chromosomes, a metacentric X chromosome, and dot-like y chromosome (Fig. 5). The chromosomes make up 2.14%-14.95% of relative length (Table 2). During diakinesis the majority of autosomes form eight or nine ring-shaped bivalents connected by two chiasmata. The remaining, smaller bivalents are rod-shaped with one chiasma, the sex chromosomes present the "parachute" association. The C-banding patterns are characterized by the presence of pericentromeric C-bands in all autosomes and the X chromosome (Figs 5-6). The karyotype and behaviour of sex chromosomes of Strophosoma faberagrees with the modal curculionid formula and previously analysed karyotypes of species belonging to the subgenus *Strophosoma* s. str. (ROŻEK & HOLECOVÁ 2000; LACHOWSKA et al. in press).

References

- ALONZO-ZARAZAGA M. A., LYAL Ch. H. C. 1999. A World Catalogue of Families and Genera of Curculionoidea (Insecta: Coleoptera). (Excepting Scolytidae and Platypodidae). Entomopraxis, S.C.P, Barcelona.
- BENEDIKT S. 2001. Brachysomus rokosensis sp. n. from Slovakia with remarks on distribution and bionomics of the genus Brachysomus in the Western Carpathians Mts. (Coleoptera: Curculionidae). Klapalekiana 37: 139-146.
- DIECKMANN L. 1980. Beiträge zur Insektenfauna der DDR: Coleoptera – Curculionidae (Brachycerinae, Otiorhynchinae, Brachyderinae). Beitr. Ent., Berlin **30**: 145-310.
- FORMÁNEK R. 1905. Zu näheren Kenntnis der Gattung Brachysomus Stephens. Wien. Entomol. Ztg. 24: 169-193.
- KOROTYAEV B. A., MELESHKO J. E. 1995. The peculiarities of the distribution of parthenogenetic weevils on example of *Polydrusus inustus* Germ. and *P. pilifer* Hochh. (Coleoptera, Curculionidae). Fauna and taxonomy. Proceed. Zool. Museum Byel. Univ., Minsk. Nauka i Tekhnika 1: 213-227. (In Russian).
- KOŠTÁL M. 1991a. Revision der *Brachysomus hispidus* (Redtenbacher, 1849)-Gruppe (Insecta: Coleoptera: Curculionidae). Ann. Naturhist. Mus. Wien **92**: 77-85.
- KOŠTÁL M. 1991b. Revision of the Brachysomus subnudus-group (Coleoptera: Curculionidae). Elytron 5: 103-110.
- KOŠTÁL M. 1992. Revision der Brachysomus transsylvanicus - Gruppe (Insecta, Coleoptera, Curculionidae: Brachyderinae). Entomol. Abh. Staat. Mus. Tierk. Dresden 55: 35-49.
- LACHOWSKA D., HOLECOVÁ M., ROŻEK M. 1998. Karyotypic data on weevils (Coleoptera, Curculionidae). Folia biol. (Kraków) 46: 129-136.
- LACHOWSKA D., ROŻEK M., HOLECOVÁ M. 2006a. Karyotypic characterization of three weevil species (Coleoptera: Curculionidae, Brachyderini). Folia biol. (Kraków) 54: 13-17.
- LACHOWSKA D., ROŻEK M., HOLECOVÁ M., KAJTLOCH L. 2006b. Cytogenetic differences between *Peritelus familiaris* and *Centricnemus leucogrammus* (Coleoptera: Curculionidae: Entiminae: Peritelini). Eur. J. Entomol. **103**: 687-690.
- LACHOWSKA D., ROŻEK M., HOLECOVÁ M. 2008. New Data on the Cytology of the Parthenogenetic Weevils (Coleoptera, Curculionidae). Genetica. (In press).
- LEVAN A., FREDGA K., SONBERG A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas **52**: 201-220.

- LUCHT W. H. 1987. Die Käfer Mitteleuropas. Katalog. Goecke & Evers, Krefeld.
- NOKKALA S., KUZNETSOVA V. G., MARYAŃSKA-NADA-CHOWSKA A. 2008. First evidence of polyploidy in Psylloidea (Homoptera, Sternorrhyncha): a parthenogenetic population of *Cacopsylla myrtilli* (W.Wagner, 1947) from the north-east of Finland is apomictic and triploid. Genetica. (In press).
- ROŻEK M. 1994. A new chromosome preparation technique for Coleoptera (Insecta). Chromosome Research 2: 76-78.
- ROŻEK M., HOLECOVÁ M. 2000. C-banding patterns in chromosomes and sperm of *Strophosoma capitatum* (De Geer, 1775) (Coleoptera: Curculionidae, Brachyderinae). Folia biol. (Kraków) 48: 33-35.
- ROŻEK M., LACHOWSKA D. 2001. C-bands on chromosomes of four beetle species (Coleoptera: Carabidae, Silphidae, Elateridae, Scarabaeidae). Folia biol. (Kraków) 49: 179-182.
- SAURA A., LOKKI J., SUOMALAINEN E. E. 1993. Origin of polyploidy in parthenogenetic weevils. J. theor.. Biol. 163: 449-456.
- SHARMA G. P., GILL T. K., PAL V. 1980. Chromosomes in the curculionid beetles (Coleoptera, Curculionidae). Coleopt. Bull. 34: 361-367.
- SMITH S. G., VIRKKI N. 1978. Animal Cytogenetics. 3. Insecta. 5. Coleoptera. Gebrüder Borntraeger, Berlin, Stuttgart.
- SMRECZYŃSKI S. 1966. Weevils Curculionidae. Subfamilies Otiorhynchinae, Brachycerinae. Keys for identification of Polish insects. PWN, Warszawa. (In Polish).

- SUMNER A. 1990. Chromosome Banding. Unwin Hyman, London.
- SUOMALAINEN E. 1940a. Polyploidy in parthenogenetic Curculionidae. Hereditas **26**: 51-64.
- SUOMALAINEN E. 1940b. Beiträge zur Zytologie der parthenogenetischen Insekten; I. Coleoptera. Ann. Acad. Sci. Fenn. A **54**: 1-144.
- SUOMALAINEN E. 1947. Parthenogenese und Polyploidie bei Rüsselkäfern (Curculionidae). Ann. Entom. Fenn., Suppl. 14: 206-212.
- SUOMALAINEN E. 1954. Zur Zytologie der parthenogenetischen Curculioniden der Schweiz. Chromosoma 6: 627-655.
- SUOMALAINEN E. 1966. The first known case of polyploidy in a parthenogenetic curculionid native of America. Hereditas **56**: 213-216.
- SUOMALAINEN E., SAURA A., LOKKI J. 1987. Cytology and Evolution in Parthenogenesis. CRC Press. Bull. Biol. Fr. Belg. **62**: 164-281.
- WANAT M., MAZUR M. 2005a. A new species of *Brachy-somus* from Poland (Coleoptera: Curculionidae: Entiminae). Genus 16: 191-198.
- WANAT M., MOKRZYCKI T. 2005b. A new checklist of the weevils of Poland (Coleoptera: Curculionoidea). Genus 16: 69-117.
- YUNAKOV N. N. 2006. Contribution to a revision of the weevil genus *Brachysomus* Schoenh. (Coleoptera: Curculionidae: Entiminae). Description of new taxa. Proceedings of the Russian Entomological Society. St. Petersburg **77**: 294-329.