Acta zool. cracov., 34(1): 189-265, Kraków, 20 Dec., 1991

Apoidea of the Tatra Mountains and the adjacent area. Part I. Colletidae, Andrenidae, Halictidae, Melittidae, Megachilidae, and Anthophoridae

Mirosława DYLEWSKA

Accepted for publication: 20 May, 1991

DYLEWSKA M., 1991. Apoidea of the Tatra Mountains and the adjacent area. Part I. Colletidae, Andrenidae, Halictidae, Melittidae, Megachilidae, and Anthophoridae. Acta zool. cracov., 34(1): 189-265

Abstract. Altogether 139 species of *Apoidea* (excluding the family *Apidae*) were recorded from the Tatras (92) and from the sub-Tatra zone (47). Their occurrence is restricted above all to warm places and the presence of food plants and suitable sites for nesting. 27 (19.5%) species are montane, north-montane, north-central-European, and Euro-Siberian elements. 70 (50%) are xerothermic species. The species live only in the warmest places and are relicts of the warmer post glacial period, when meso-climatic conditions prevailed here, enabling them to spread. Similarly, a few of their highest localities are relict ones.

Key words: Colletidae, Andrenidae, Halictidae, Melittidae, Megachilidae and Anthophoridae, Tatra Mts

Mirosława DYLEWSKA, Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, ul. Sławkowska 17, 31-016 Kraków, Poland

I. INTRODUCTION

Investigations on the Apoidea fauna of the Polish Tatras and the adjacent area were initiated by WIERZEJSKI (1868, 1874), then continued by ŚNIEŻEK(1910), NOSKIEWICZ (1920), DYLEWSKA (1958), and in Czechoslovakia by MOCSÁRY (1918), BALTHASAR (1952), and BELÁKOVÁ (1980). Altogether, from the Tatras and from the sub-Tatra zone these authors reported 108 Apoidea species including 83 belonging to the families discussed in the present paper. The remaining 25 species constitute representatives of the family Apidae, which will be described in Part II of this monograph.

In his paper dealing with the Aculeata of the Polish Tatras NOSKIEWICZ (1920) determined several altitudinal limits of distribution of particular species paying special attention to the altitude 1150 m, above which he was able to most only single species.

In summing up the data on the *Apoidea* of the High Carpathians DYLEWSKA (1970) revealed that the upper limits of the altitudinal distribution of the *Apoidea* were connected with the climatic zones distinguished by HESS (1965). Moreover, the author found that their sensitivity to climatic conditions limits their places of nesting and flying to the warmest localities. Such localities are to be found on northwestern and northern edges of glades or forest clearing as well as in their central parts, and above the timber line on south or southeastern slopes, in places sheltered from the north and west by unevan terrain. TOMANEK (1952) in his work on the microclimate of forest clearings in our latitude showed that the warmest and best isolated places with the lowest precipitation and shortes period of snow cover were indeed situated on the northwestern and northern margins and the middle of forest clearings.

The present studies on the Apoidea fauna of the Tatras were carried out over the whole area of this mountain range and in the sub-Tatra zone in the period from 1967-1988. The author collected 2006 specimens of the family Apoidea (except the family Apidae). Besides, the author made use of the collections of J. ZABŁOCKI, J. FUDAKOWSKI, A. WIERZEJSKI, J. ŚNIEŻEK, P. ŁOZIŃSKI, O. RADOSZKOWSKI and Z. MIREK kept at the Institute of Systematics and Evolution of Animals of the Polish Academy of Sciences in Cracow. In elaborating of these collections she found only some of the specimens published by WIERZEJSKI (1868, 1884) and ŚNIEŻEK (1910), these having been identified anew by J. NOSKIEWICZ. The author was also able to establish that NOSKIEWICZ's collection from the Tatras and sub-Tatra zone, kept in the Museum of the University of Wrocław, is incomplete. Particularly important was the finding in this collection of one specimen of Lasioglossum cupromicans whose presence in the Tatras might have been questioned. A.W. EBMER identified this specimen as well as the part of the present author's material from the genus Lassioglossum, which is given in the list of species.

The author wishes to express her sincere thanks to A.W. EBMER as well as to W. CELARY, who examined the Wrocław collection and searched for her the material gathered by NOSKIEWICZ in the Tatras and sub-Tatra zone. She is also grateful to Mrs L. BIELECKA and Mrs L. SWAT for making the calculations in the tables of the present paper.

II. DESCRIPTION OF THE AREA

The Tatras are the highest mountain range of the West Carpathians (KONDRACKI 1978). Their main ridge is 52 km long, while their width is about 16 km, three parts being distinguished: the High Tatras, Belanské Tatras, and West Tatras. The High Tatras are built of granite and characterized by a large number of peaks of over 2490 m (fig. 1), the highest of them, Mt. Gerlachovska, reaching 2656 m. The remaining parts of the Tatras are built chiefly of limestone, only some sectors of the West Tatras being also of granite. The highest peak of the West Tatras, Mt. Bystra, is 2250 m in altitude. The Belanské Tatras are formed of the massifs of Mts Havran and Muran, the higher of which reaches 2151 m.

background of altitudes and main geographical units. Top left: situation of the Tatra Mts and other discussed regions (B - Mt Babia Góra, P - Pieniny Mts, Pop - Poprad River)

Fig. 2. Overheighted profile of the Tatra Mts showing the differences between limits of climatic zones on the southern (S) and northern (N) slopes on the background of mean year temperatures (acc. Hees 1965): a - cold, b - cold temperate, c - very cool, d - cool, e - cool temperate, f - warm temperate. The arrows indicate upper limits of climate seasons: g - spring, h - late spring, i - summer.

The northern limestone slopes of the Tatras rise steeply above the Zakopane Basin to higher and higher levels to reach the summits of Giewont (1894 m) and Czerwone Wierchy (2123 m) (Fig. 2). The southern slopes of the highest peaks fall away rapidly towards the Liptów and Poprad Basins in rock walls many with a face of even 2000 m. The northern slopes of the Tatras are dissected by deep and wide valleys, while on the southern side narrow valleys out into the massif of the Tatras only at about 1100 m. As compared with the northern slopes which are distinguished by a great variety of relief, the southern ones are almost smooth.

On three sides the lower boundary of the Tatras is clearly marked by sub-Tatra basins (Fig. 1). From the west, however, the range borders on the Zatatranska Brazda where, as in the sub-Tatra basins, there is a contact zone between Tatra rocks and West-Carpathian flysch. This forder is fairly precisely marked by the lower timber line running at an altitude of 900-1100 m.

In the Atlantic period (5700-3100 B.C.) the Tatras and the sub-Tatra zone had a dense forest cover extending from alt. 600 to 1900 m (MIREK, PIĘKOS-MIREK in press).

However, within this forest there were open spaces (windfalls and landslides) where the Apoidea could live. In the sub-Atlantic period (300 B.C. until the present), when the climate became cooler, the upper timber line was formed, observed today at alt. 1550-1650 m. In the latter part of the sub-Atlantic period human activity began in this area, leading to almost total destruction of the forest in the sub-Tatra zone, on both the northern and southern slopes (no more than 20% of their previous are remaining), to changes in the composition of the Tatra stands, and to the appearance of glades. At present, the Tatra forests are dominated by spruce (SZAFER, ZARZYCKI 1972, LUKNIŠ 1972), while fir, beech, and other tree species occur only in small areas. Sheep herding developing in the Tatras over seven hundred years has contributed to the creation of glades (PAWŁOWSKI, PAWŁOWSKA, ZARZYCKI 1960, LUKNIŠ 1972) which, periodically mown and grazed, constitute, apart from the small areas of cultivated fields and built-up land, the largest open speces in the sub-Tatra zone and occupy a considerable area in the Tatra forests. In these glades there develop the meadow communities Gladiolo-agrostietum and Cirsietum rivulare. The latter cover about 10% of the area, this being connected with the humid substratum, and are characterized by luxuriant vegetation and many accompanying plant species, most of which are visited by the Apoidea. These are species of the genera Salix, Hieracium, Primula, Phyteuma, Mentha, and others. Much richer are the Gladiolo-Agrostetum communities which, usually from mid-April, immediately after the snow melt, are covered with bluish patches of flowering Crocus scepusiensis and in May with the yellow ones of Primula elatior and Taraxacum. At the end of June, i.e. at the beginning of the phenological summer, Trifolium, Veronica chamaedris, Hieracium, Leontodon, Potentilla, Campanula, and others begin to bloom in these meadows. In the early part of July the meadows have reached full growth and should be mown. However, hay-making continues in this area till mid-August. This is the period of phenological summer when Hieracium, Leontodon, Lathyrus pratensis, Campanula patula, and others are in bloom. The phenological autumn begins in the middle of August and lasts until the beginning of September. Leontodon, Hieracium, and Potentilla are still flowering, and Taraxacum begins to bloom.

The forest belt of the Tatras and of the adjacent area is divided into two zones: the lower montane forest zone (up to alt. 1200 m) and upper montane forest zone (up to about 1600 m). The upper limit of the lower montane forest zone is indicated by the occurrence of the *Fagetum carpaticum* community (PAWŁOWSKI 1956).

Above the timber line there extends the subalpine zone of dwarf mountain pine thickets *Pinion mughi* with *Pinus montana* ssp. *mughus* accompanied by such plant species as *Salix, Ribes, Padus, Hieracium, Aconitum firmum, Vaccinium* and others willingly visited by the *Apoidea*. The dwarf mountain pine zone reaches the altitude 1800 m above which lies the alpine zone and from 2250 m up to the highes summits the subnival zone. In these zones there develop high montain grasslands (SZAFER, ZARZYCKI 1972, LUKNIŠ 1972), while in the subnival zone more than 100 vascular plant species still occur, among them *Campanulla alpina*.

The vertical range of the particular floristic zones is conditioned by the Tatra climate, e.g. the timber line correlates well with the mean annual isotherm $+ 2^{\circ}C$ (HESS 1965). Fig. 2 and Table I show the ranges of climatic zones on the northern and southern slopes of the Tatras and Table I indicates additionally their ranges in the valleys. As can be seen from Fig.2 and Table I, the limits of climatic zones on southern slopes run higher by about 100 m than those on norhern ones. In the Tatra valleys the observed differences depend upon their width. Thus, in narrow valleys the limits are lowered by about 300 m as compared with the slopes, but in wide ones by no more than 150 m. Also the upper limits of climatological seasons run at different altitudes according to the slope aspect (KONČEK 1974). Climatic summer, in which the number of days with on average daily temperature above 15°C is at least 15, occurs on southern slopes up to an altitude of about 1000 m (Fig. 1). On the northern side of the Tatras and sub-Tatra zone there is no climatic summer, and its upper limit is beyond the investigated area. The upper limit of climatic late spring, when the number of days with an average daily temperature above 10°C is at least 15, runs at a similiar altitude on the two slopes ($\pm 1600-1650$ m), also in lower part of sub-alpine zone. Climatic spring with an average daily temperature of least 5°C ends in the upper limit of the alpine zone (± 2200 m).

Table I

Dependences of height and limits of vertical plant zones upon relief in Tatra Mts (after HESS, 1965)

	Upper limit of zone									
Plant zones	ſ	North slope	s	S	outh slope	s				
	slopes	broad valleys	small valleys	slopes	broad valleys	small valleys				
Oats cultivation	1135	985	835	1205	1055	905				
Lower mountain forest zone	1266	1181	1096	1322	1237	1152				
Upper mountain forest zone	1567	1482	1397	1628	1538	1453				
Subalpine zone	1750	1678	1607	1882	1810	1739				
Alpine zone	1921	1849	1778	2053	1981	1910				

III. METHODS

The study depended on catching practically all the observed specimens of *Apoidea* belonging to the families discussed in this part of the monograph. Catches were repeted 3-4 times in the same localities, chiefly in forest areas, duing one growing season. Repeated catches in the same localities were essential because particular species are characterized by limited times of appearence, lasting about two months (early spring, late spring, and summer bees, and II and III generations).

194

Because of the fact that the investigated families of *Apoidea* occur in the Tatras and sub-Tatra zone only in the warmest places (DYLEWSKA 1970), the localities had to be sought with the help of maps, visual assessment of the terrain, and persistent penetration of as many possible of the previously selected areas. The investigations were carried out in all the altitudinal zones of the Tatras.

The field studies covered 14 vegetation periods, in the years 1967-1988, and lasted each year for one to two months. Studies of long duration were essential because of the vast area they covered and the variable Tatra weather, and the associated long cold spells which prevented bees from pesing.

In the identification of insects and processing of data the author made use of recent monographs (DATHE 1980, EBMER 1969, 1970, 1974, 1975, 1988, DYLEWSKA 1987) dealing with the particular genera, namely: *Hylaeus, Halictus, Lasioglossum*, and *Andrena* as well as of works by SCHMIEDEKNECHT (1930) and STOECKHERT (1933).

In the chapter entitled: "List of species" the particular altitudinal zones are marked with Roman numericals. They are as follows:

1.	Sub-Tatra zone	- ca. 600-900 m
II.	Lower montane forest zone	- ca. 900-1200 m
III.	Upper montane forest zone	- ca. 1200-1550 m
IV.	Subalpine zone	- ca. 1550-1800 m
V.	Alpine zone	- ca. 1800-2200 m
VI.	Subnival zone	- ca. 2200-2663 m

Northern (N) and southern (S) slopes are also marked in the list of species.

Species of the families Colletidae, Andrenidae, Halictidae, Megachilidae, and Anthophoridae were found in zones I-IV, but they were not recorded from zones V-VI in spite of careful searching.

All the collected specimens of the investigated families were caught in 109 localities. These are presented successively with regard to the division into the above-mentioned ^{20nes} (Fig. 1):

Zone IV N: 1 - Iwaniacka pass, 2 Siwe Sady slopes, 3 - slope of Mt. Kasprowe Uhrocie, 4 - Lake Morskie Oko, 5 - slope of Miedziane Mt., 6 - slope of Opalone Mt.

Zone IV S: 7 - slope of Mt. Slavkovský, 8 - Velická Val., 9 - Popradské Pleso Lake, ¹⁰ - Ticha Val., 11 - Track to Jalovské pass.

Zone III N: 12 - Hala Chochołowska meadow, 13 - slope of Mt Kominy Tylkowe, 14 - Hala Smytnia Wyżnia meadow, 15 - Hala Ornak Wyżnia meadow, 16 - Hala Ornak meadow, 17 - Ornak couloir, 18 - Żar slope, 19 - Tomanowa Val., 20 - Hala Tomanowa meadow, 21 - Hala Kondratowa meadow, 22 - Hawiarska path, 23 - Hala Kondratowa meadow, 24 - slope of Mt Kalacka Turnia, 25 - slope of Mt Boczań, 26 - Polana Rusinowa meadow, 27 - slope of Mt Wołoszyn, 28 - Wodogrzmoty Mickiewicza waterfall, 29 - road to lake Morskie Oko, 30 - Mt Opalone.

M. DYLEWSKA

Zone III S: 31 - Hrebienok, 32 - above Nový Smokovec, 33 - Vyšné Hagi, 34 - above Vyšné Hagi, 35 - Štrbské Pleso lake, 36 - Mengusovska Val., 37 - Tri studničky, 38 -Žiarska Val.

Zone II N: 39 - Juranová Val., 40 - Bobrovska Val., 41 - Zverovka, 42 - Siwa Polana meadow, 43 - Chochołowska Val., 44 - Wyżnia Kira Miętusia meadow, 45 - Kościeliska Val., 46 - Polana Zahradziska meadow, 47 - Hala Smytnia Niżnia meadow, 48 - Ku Dziurze Val., 49 - Mała Łąka Val., 50 - Strążyska Val., 51 - Hala Strążyska meadow, 52 - Jatki slope, 53 - Kuźnice, 54 - road to Kalatowki, 55 - Kalatowki meadow, 56 -Jaworzynka Val., 57 - Olczyska Val., 58 - Toporowa Cyhrla, 59 - Łysa Polana meadow, 60 - Biała Woda Val.

Zone II S: 61 - above Tatranská Kotlina, 62 - Tatranská Kotlina, 63 - Tatranská Lomnica, 64 - Nový Smokovec, 65 - Starý Smokovec, 66 - Horný Smokovec, 67 - Sybir, 68 - Ticha Val., 69 - Podbanské, 70 - above Podbanské, 71 - Hrdovo, 72 - slope of Mt Suchy hrádok, 73 - slope of Mt Klinovaté, 75 - Briśné, 76 - Uboč meadow, 77 - Žiarská Val.

Zone I N: 78 - near Zuberec, 79 - Blatná, 80 - Brestová, 81 - Oravice, 82 - Ticha Val., 83 - Siwa Woda Val., 84 - Kiry, 85 - Gronik Kościeliski, 86 - Palenica, 87 - Gubałówka, 88 - Zakopane, 89 - slope of Mt Antałówka, 9- - Jaszczurówka Bory, 91 - slope of Mt Galicowa Grapa, 92 - Bukowina Tatrzańska, 93 - Głodówka, 94 - Ždiar.

Zone I S: 95 - Dolný Smokovec, 96 - Pod lesom, 97 - Nová Lesná, 98 - Poprad, 99 - Gerlachov, 100 - Batižovce, 101 - Štola, 102 - Nižné Hági, 103 - Lučivna, 104 - Kralová Lechota, 105 - Pribyliná, 106 - Potočký, 107 - Liptovský Hradok, 108 - Podturen, 109 - Lučky.

The names of plants are given after SZAFER, KULCZYŃSKI, PAWŁOWSKI (1986). The names of villages given by MOCSÁRY (1918) in Hungarian are given, in the list of species, in Slovakia according to PFOHL (1931).

IV. LIST OF SPECIES

The particular species are shown according to the following scheme:

Current No. Full Latin name. Zone No: No of locality - date (Roman numericals indicate months), No and sex of specimens (q and σ), plant genus or species if the insect was caught on a flower; No of the next locality - ...(and so on).

Some of the above data may be missing in the case of specimens coming from a collection not gathered by the author or in the case of those mentioned in papers by authors quoted in the introduction. In such cases the names of collections or authors are given.

Colletidae

1. Colletes cunicularius (LINNAEUS, 1761). II N: 43 - 13 V 1967, σ on Salix. 2. Colletes daviesanus SMITH, 1846. I N: 88 - July (ŚNIEŻEK 1910); I S: 98 - MOCSÁRY (1918).

3. Hylaeus gibbus (SAUNDERS, 1850). I N: 92 - 4 VIII 1939, o leg. ZABŁOCKI.

4. Hylaeus signatus (PANZER, 1798). I N: 78 - 16 VI 1972, o on Reseda lutea.

5. Hylaeus confusus NYLANDER, 1848. I N: 79 - 27 VII 1967, ç. 82 - 29 VII 1967, ç on Potentilla; II N: 40 - 29 VII 1967, ç ơ on Hieracium. 58 - 1 VIII 1920, ơ leg. NOSKIEWICZ; II S: 69 - 19 VII 1977, ơ. 72 - 22 and 30 VII 1977, 4 ợc on Leontodon. 75 - 23 VII 1977, ơ.

6. Hylaeus annulatus (LINNAEUS, 1758) I N: 88 - 19 VIII 1987, σ. II S: 69 - 19 VII 1977, φ on Digitalis lutea. 72 - 30 VII 1977, φ on Leontodon. III N: 19 - 20 VIII 1977, φ on Potentilla.

7. Hylaeus cardioscapus COCKERELL, 1924

IN: 88 - 17 VI 1969, on Hieracium. 89 - 20 VII 1987, 2 on Stachys and Veronica. 91 - 16 VII 1987, on Campanulla patula. 92 - 4 VIII 1987, or leg. ZABŁOCKI.

8. Hylaeus communis NYLANDER, 1852

IN: 89 - 20 VII 1987, 7 90 on Stachys and Veronica. 91 - 16 VII 1987, 9.

9. Hylaeus nigritus (FABRICIUS, 1798) II S: 72 - 30 VII 1977, ơ.

10. Hylaeus hyalinatus SMITH, 1842

IN: 89 - 20 VII 1987, 9 on Veronica.

I S: 95 - 26 VI 1972, 9 on Hieracium. 107 - 13 IX 1979, 3 99 on Scabiosa. 108 - 13 IX 1979, 9 on Hieracium.

II S: 69 - 19 VII 1977, of on Digitalis lutea. 72 - 30 VII 1977, of. 75 - 23 VII 1977, of on Potentilla.

11. Hylaeus cornutus (SMITH, 1842 II S: 63 - BALTHASAR (1952)

Andrenidae

12. Andrena labialis (KIRBY, 1802) I N: 92 - 15 VI 1939, o leg. ZABŁOCKI.

13. Andrena haemorrhoa (FABRICIUS, 1781)

IN: 83 - 14 V 1967, 3 00 and 6 or on Salix. 87 - 17 V 1988, 2 00 and or on Salix. 88 - 18 V 1988, or on Salix. 89 - 16 and 19 V 1988, 0 and 11 or on Salix. 93 - 11 V 1967, or on Tussilago farfara.

- I S: 96 14 V 1975, q. 97 13 V 1975, of on Salix. 105 12 and 17 V 1985, 5 q. on Salix fragilis. 107 11 V 1985, 3 q. on Salix aurita.
- II N: 42 13 V 1967, 2 or on Salix. 44 12 V 1967, 9 and 5 or on Salix. 56 19 VI 1970, o on Potentilla aurea.
- II S: 69 20 V 1985 9 of on Salix aurita and near by sprigs of the Picea excelsa. 71 20 V 1985, 4 of on Salix aurita and Taraxacum officinale. 74 17 V 1985, 3 qq on Salix aurita.

IV N: 5 - 22 VI 1970, 9 on Vaccinium myrtillus.

14. Andrena hattorfiana (FABRICIUS, 1775)

All specimens on Knautia arvensis.

I N: 78 - 16 VI 1972, ç. 84 - 31 VIII 1967, ç. 91 - 16 VII 1987, ç. 94 - 21 VII 1965, 5 çç. I S: 95 - 22 VI 1972, 2 çç.

II S: 65 - MOCSÁRY (1918). 72 - 22 VII 1977, 3 çç.

15. Andrena schencki MORAWITZ, 1866 I N: 78 - 16 VI 1972, 9 on Medicago.

16. Andrena rufizona PÉREZ, 1834 I N: 91 - 16 VII 1987, o on Rosa canina leg. MIREK. II N: 58 - 9 VIII 1919, o (NOSKIEWICZ 1920).

17. Andrena nigroaenea (KIRBY, 1802) I N: 78 - 16 VI 1972, 9 on Reseda lutea. I S: 95 - 29 V 1972, 2 oo on Potentilla aurea and 22 VI 1972, 3 oo.

18. Andrena flavipes PANZER, 1799 I N: 84 - 4 VIII 1968, ç. II S: BELÁKOVÁ (1980)

19. Andrena gravida IMHOFF, 1832 IV N: 2 - 5 VIII 1968, 9 on Leontodon.

20. Andrena limata SMITH, 1853 I S: 103 - MOCSÁRY, 1918.

21. Andrena nitida (MÜLLER, 1775) II S: BELÁKOVÁ (1980).

22. Andrena cineraria (LINNAEUS, 1758) I N: 88 - 3 V 1908, 9 leg. ŚNIEŻEK.

23. Andrena combinata (CHRIST, 1791) I S: 95 - 22 VI 1972, of and 29 V 1973, 10 of on Potentilla aurea. II S: 69 - 20 V 1985, of on Vaccinium myrtillus.

24. Andrena wilkella (KIRBY, 1802) I N: 92 - 12-24 VIII 1939, 6 ∞ leg. ZABŁOCKI. I S: 95 - 22 VI 1972, ∞ and 3 co near by branches of *Picea excelsa*.

Apoidea of the Tatra Mountains

25. Andrena ovatula (KIRBY, 1802)

I N: 78 - 16 VI 1972, o on Reseda lutea. 94 - 21 VII 1965, o. 91 - 16 VII 1987, o. I S: 95 - 22 VI 1972, 12 oo. 100 - 21 IX 1979, o. 103 - 21 IX 1979, o on Trifolium. II S: 62 - 21 VI 1972, o on Hieracium. 66 - 28 VI 1972, o on Echium vulgare.

26 Andrena minutula (KIRBY, 1802)

IS: 105 - 20 VII 1977, 9 on Hieracium.

II S: 63 - 21 V 1972, 9 on Hieracium. 69 - 25 V 1985, 2 99 on Salix aurita. III N: 20 - 8 VI 1967, 2 99 on Potentilla aurea.

27. Andrena minutuloidea PERKINS, 1914

IS: 105 - 20 VII 1977, 9 on Hieracium. 109 - 23 V 1985, 9 on Salix fragilis.

28. Andrena falsifica PERKINS, 1915

I S: 95 - 29 V 1973, 8 ∞ and 2 of on Potentilla aurea, Veronica chamaedris and Taraxacum officinale. 97 - 30 V 1973, ∞ on Taraxacum officinale. 109 - 23 V 1985, ∞ on Salix fragilis.

II N: 47 - 16 V 1967, 9 on Gagea lutea.

II S: 63 - 21 V 1973, 2 \oplus and m and 21 VI 1972, \oplus on Hieracium. 71 - 20 V 1985, 2 \dds on Taraxacum officinale. 76 - 16 V 1985, \oplus on Taraxacum officinale. III N: 19 - 5 VII 1971, \oplus on Potentilla erecta.

1) - 5 vii 1971, 9 0h Fotentutu erectu.

29. Andrena semilaevis PÉREZ, 1903

IS: 95 - 29 V 1973, of on Potentilla aurea. 109 - 23 and 29 V 1985, q and 2 of on Salix fragilis.

II N: 45 - 13 V 1971, q.

II S: 67 - 30 V 1973, o. 77 - 16 V 1985, o on Salix aurita.

III N: 21 - 18 VI 1969, 5 oo on Potentilla erecta.

III S: 38 - 25 VII 1977, 9 on Potentilla erecta.

30. Andrena subopaca NYLANDER, 1848

IN: 80 - 27 VII 1967, o. 81 - 25 VII 1967, 2 oo n Potentilla. 84 - 14 V 1967, o on Tussilago farfara and 31 VIII 1967, o on Hieracium. 88 - 14 VII 1908, o leg. SNIEŻEK. 89 - 16 V 1988, o on Salix.

IS: 105 - 20 VII 1977, 9 on Leontodon.

- II N: 41 27 VII 1967, 6 \oplus on Hieracium. 47 16 V 1967, \oplus and \vert on Gagea lutea. 50 17 VI 1969, 2 \oplus on Taraxacum officinale. 51 26 VI 1970, 3 \oplus on Veronica chamaedris. 53 19 VI 1970, 2 \oplus on Potentilla aurea. 54 15 V 1967, \oplus. 55 27 and 29 VI 1969, 3 \oplus and \vert and 11 VIII 1967, \oplus on Potentilla aurea. 56 25 VI 1967, \oplus on Hieracium and 19 and 26 VI 1970, 11 \oplus on Taraxacum officinale, Potentilla aurea, Veronica chamaedris and Rannunculus. 58 29 VI 1969, \oplus on Hieracium. 60 11 VIII 1973, \oplus.
- II S: 63 31 VI 1976, o on Leontodon. 68 14 V 1985, o on Potentilla. 69 14 V 1985, o on Tussilago farfara. 71 - 29 VII 1977, 2 oo on Potentilla erecta. 72 - 30 VII 1977, o. 75 - 23 VII 1977, o on Potentilla erecta. 77 - 25 VII 1977, o.
- III N: 15 7 VIII 1971, 2 oo on Potentilla erecta. 16 19 VIII 1971, o on Potentilla. 19 20 VIII 1971, 2 oo on Hieracium. 21 18 VI 1969, o on Potentilla erecta. 23 8 VI

1967, 15 oo and 2 oo on Potentilla aurea and 24 VI 1967, o and o on Hieracium. 26 -12 VIII 1973, o. 27 - 27 VII 1968, o on Hieracium. 29 - 5 VIII 1968, o on Potentilla. IV N: 1 - 4 VII 1967, o on Potentilla.

31. Andrena coitana (KIRBY, 1802)

- I N: 84 31 VIII 1967, φ on *Hieracium*. 88 10 VII 1919, σ leg. ŁOZIŃSKI and 14 VII 1908, 3 φ leg. ŚNIEŻEK and 31 VII - 22 VIII, 4 φ leg. WIERZEJSKI. 89 - 20 VII 1987, φ and 3 $\sigma\sigma$ on *Veronica*. 92 - 12-21 VII 1939, 12 $\sigma\sigma$ and 12 VII - 8 VIII 1939, 7 φ leg. ZABŁOCKI. 94 - 21 VII 1965, φ and 31 VIII 1965, σ .
- IS: 105 20 VII 1977, 9 on Leontodon.
- II N: 41 27 VII 1967, 2 oo on Chamaenerion angustifolium. 46 18 VI 1967, 2 oo on Potentilla erecta. 50 - 20 VII and 4 VIII 1923, 2 oo leg. FUDAKOWSKI. 60 - 24 VIII 1956, o.

II S: 72 - 22 VII 1972, 9 and o on Leontodon.

III N: 15 - 24 VII 1974, 2 oo n Hieracium and 7 VIII 1976, 9 oo n Potentilla erecta. 17 - 7 VIII 1976, 2 oo n Potentilla. 18 - 10 VII 1976, 2 oo n Hieracium. 19 - 5 VII 1974, 2 oo n Potentilla erecta. 26 - 12 VIII 1973, 3 oo. 27 - 27 VII 1967, o n Hieracium.
III S: 37 - 27 VII 1977, o n Hieracium.

32. Andrena denticulata (KIRBY, 1802)

I N: 88 - 31 VII 1968,2 or leg. WIERZEJSKI and 19 VIII 1968, o. 92 - 18 and 22 VII 1939, 2 or leg. ZABŁOCKI.

33. Andrena nigriceps (KIRBY, 1802) II N: 58 - 9 VIII 1919, φ (NOSKIEWICZ 1920).

34. Andrena bicolor FABRICIUS, 1775

- I N: 84 31 VIII 1967, o on Leontodon. 89 20 VII 1987, 2 oo on Hieracium and Campanula. 91 - 16 VII 1987, 6 oo on Campanula patula. 92 - 18-24 VII 1939, 3 oo leg. ZABŁOCKI. 94 - 21 VII 1965, o.
- I S: 97 14 V 1975, 9 on Prunus. 105 20 VII 1977, 9 on Campanula. 109 23 V 1985, 9 on Salix fragilis.
- II N: 46 9 VIII 1968, 9 and 3 of on Astrantia major. 47 16 V 1967, 9 on Gagea lutea. 49 - 13 V 1955, 9. 50 - 17 VI 1971, 2 99 on Taraxacum officinale. 55 - 14 V 1955 and 14 V 1971, 5 99 on Crocus scepusiensis.
- II S: 63 21 V 1973, 2 \oplus and 20 VIII 1971, \vert on Veronica chamaedris. 65 29 V 1973, \oplus on Lamnium rubrum. 69 - 14 and 20 V 1985, 8 \oplus on Tussilago farfara and Salix aurita. 71 - 20 V 1985, 3 \oplus on Taraxacum officinale and Salix aurita and 29 VII 1977, \oplus on Campanula. 75 - 23 VII 1977, 2 \oplus and 2 \oplus on Campanula. 76 - 16 V 1985, 4 \oplus on Taraxacum officinale. 77 - 16 and 20 V 1985, 10 \oplus on Salix auricula and Tussilago farfara and 25 VII 1977, 2 \oplus on Campanula and 6 IX 1979, 2 \oplus on Hieracium.
- III N: 14 12 and 16 V 1967, 2 φ on Gagea lutea and 23 VII 1971, σ on Hieracium and 8 VIII 1968, 2 σσ on Stellaria and 19 VIII 1971, σ on Hieracium. 19 - 10 VIII 1968, σ. 21 - 13 V 1955, φ and 18 VI 1968, φ on Hieracium. 29 - 5 and 19 VIII 1967, 2 φ and σ of Potentilla and Hieracium.

III S: 35 - 15 V 1975, 2 99 on Tussilago farfara. 37 - 11 V 1985, 6 99 on Tussilago farfara, Salix aurita and Crocus scepusinsis. 38 - 25 V 1985, 9 on Petasites glabratus.

IV N: 4 - 9 VIII 1967, o on Hieracium.

IV S: 9 - 15 V 1975, 2 oo n Tussilago farfara.

35. Andrena ruficrus NYLANDER, 1848

IS: 105 - 17 V 1985, o on Salix aurita.

II S: 69 - 14 and 20 V 1985, 3 ∞ on Salix aurita. 71 - 20 V 1985, 2 ∞ on Salix aurita. 74 - 17 V 1985, 3 ∞ on Salix aurita.

III S: 35 - 22 V 1973, 3 90 on Salix aurita and Tussilago farfara.

36. Andrena jakobi PERKINS, 1914 I S: 109 - 23 V 1985, & on Salix fragilis.

37. Andrena rosae PANZER, 1801

IS: 109 - 23 V 1985, 3 90 on Salix fragilis.

II S: 65 - MOCSÁRY (1918).

38. Andrena praecox (SCOPOLI, 1763)

- I N: 83 14 V 1967, o on Salix, 88 18 V 1988, 3 or on Salix. 89 16 and 19 V 1988, 9 or and 3 or on Salix.
- I S: 96 14 V 1975, 2 \oplus, 97 13 V 1975, 5 \oplus on Salix. 105 11 and 17 V 1985, 36 \oplus on Salix fragilis. 107 20 V 1985, 35 \oplus on Salix fragilis. 109 23 and 29 V 1985, 42 \oplus on Salix fragilis.

II N: 44 - 12 V 1967, 9 on Salix.

II S: 69 - 14 and 20 1985, 3 90 on Salix aurita. 71 - 20 V 1985, 9 on Salix aurita.

39. Andrena lapponica ZETTERSTEDT, 1838

IN: 89 - 16 and 19 V 1988, 9 and 2 or on Salix and Vaccinium myrtillus.

- II N: 47 16 V 1967, 4 oo and 6 oo on Gagea lutea and 27 VI 1967, o. 50 26 VI 1970, oo n Veronica chamaedris. 54 - 15 V 1967, 3 oo on Vaccinium myrtillus. 55 - 15 V 1967, o and 4 oo on Gagea lutea. 56 - 19 VI 1970, o on Potentilla aurea. 58 - 13 and 16 V 1971, 2 oo and 6 oo on Salix and Vaccinium myrtillus.
- II S: 63 21 V 1973, 2 \oplus on Gagea lutea. 69 11 and 20 V 1985, 2 \oplus and \circ} and \circ on Salix auricula. 71 20 V 1985, 2 \oplus and \circ on Salix aurita and Taraxacum officinale. 77 25 V 1985, 2 \circ on Tussilago farfara.
- III N: 12 13 IV 1967, 2 of on Anemone rannunculoides. 14 10 and 12 V 1967, 8 of on Gagea lutea. 16 - 16 V 1967, 2 of on Petasites albus and Tussilago farfara. 23 - 8 VI 1967, 2 of. 24 - 23 V 1956, 2 of on Gagea lutea.
- III S: 31 19 and 23 V 1973, 4 of on Petasites albus. 35 30 VI 1972, 9 and of on Vaccinium murtillus and 22 and 29 V 1973, 2 90 on Salix. 36 24 V 1973, 2 of on Salix. 38 25 V 1985, 6 99 and 2 of on Petasites albus and 25 VII 1977, 9 on Hypericum.
- IV N: 3 9 VIII 1955, o on Vaccicnium myrtillus and 6 VII 1955, 3 oo on Vaccinium myrtillus. 5 19 and 22 VI 1970, 7 oo and 2 of on Vaccinium vitis idaea and 23 V 1973, of on Petasites albus. 6 6 VI 1969, of on Taraxacum officinale and 22 VI 1970, o on Vaccinium myrtillus.

IV S: 7 - 23 V 1973, 5 op on Salix. 8 - 15 V 1975, 9 and 8 of on Salix and 25 VII 1977, 9 on Vaccinium vitis idaea.

40. Andrena fucata SMITH, 1847

I N: 88 - 27 VI 1970, on Sinapis arvensis. 89 - 20 VII 1987, on Rosa canina. 91 - 16 VII 1987, 3 op on Campanula patula.

I S: 105 - 20 VII 1977, 9 on Rubus idaeus.

II N: 40 - 29 VII 1967, 2 00 on Aruncus. 54 - 8 V 1967, o on Taraxacum officinale.

II S: 61 - 29 VI 1972, o. 63 - 21 VI 1972, 3 od. 69 - 19 VII 1977, 8 oo on Rubus idaeus. 77 - 23 and 25 VII 1977, 3 oo on Rubus idaeus.

III N: 15 - 7 VIII 1976, g.

41. Andrena varians (ROSSI, 1792) II S: BELÁKOVÁ (1980).

42. Andrena apicata SMITH, 1847

I N: 88 - 18 V 1988, o on Salix.

IS: 109 - 23 V 1985, 9 on Taraxacum officinale.

II N: 44 - 12 V 1967, o on Salix.

II S: 69 - 20 V 1985, d.

IV S: 9 - 15 V 1985, d.

43. Andrena clarkella (KIRBY, 1802)

I N: 89 - 14 and 16 V 1988, 4 99 on Salix.

IS: 97 - 13 and 14 V 1975, 2 oo on Salix. 109 - 23 V 1985, o on Salix fragilis.

II N: 44 - 12 V 1969, 2 99 on Salix.

II S: 69 - 14 and 20 V 1985, 21 op on Salix aurita and Taraxacum officinale. 74 - 17 V 1985, 3 op on Salix aurita. 77 - 16 and 25 V 1985, 5 op on Salix aurita and Petasites albus.
III S: 35 - 22 and 29 V 1973, 6 op on Salix aurita. 37 - 11 V 1985, 2 op on Salix aurita.
IV S: 9 - 29 V 1973, o on Salix and 15 V 1975, o on Salix. 10 - 26 V 1985, 4 op on Salix.

44. Andrena humilis IMHOFF, 1832

- I N: 84 31 VIII 1967, o on Hieracium. 87 27 VI 1971, o and 2 or on Hieracium. 88 17 VI 1969, 6 oo on Hieracium and 20 VI 1988, 2 oo and 2 or on Taraxacum officinale and 27 VI 1970, or on Hieracium and 18 VII 1927, o leg. FUDAKOWSKI. 89 21 VI 1988, o and 6 or on Hieracium and 20 VII 1987, o on Hieracium. 90 25 VI 1977, o and o on Hieracium. 94 11 VII 1985, 8 oo.
- I S: 95 22 VI 1972, *q* on *Leontodon* and 26 VI 1973, 3 *qq* on *Taraxacum officinale*. 97 -13 V 1975, *q* on *Taraxacum officinale*. 99 - 22 VI 1972, 4 *qq* and *d* on *Hieracium*. 102 - 28 VI 1972, *q* on *Hieracium*. 107 - 11 V 1985, 2 *qq* and 3 *d d* on *Taraxacum officinale*. 109 - 20 V 1985, 2 *qq* on *Taraxacum officinale*.
- II N: 39 5 VII 1967, φ and 9 VIII 1967, φ . 44 2 VII 1967, φ on Hieracium. 46 18 VI 1969, φ on Hieracium. 58 - 9 VI 1964, φ on Hieracium and 29 VI 1969, 2 $\varphi \varphi$ and 3 $\sigma \sigma$ on Hieracium.
- II S: 63 21 VI 1973, 2 00 and c. 64 22 VI 1972, c on Leontodon. 77 25 V 1985, c on Taraxacum officinale.

45. Andrena ventralis IMHOFF, 1832 I S: 107 - 11 V 1985, 9 on Salix.

46. Andrena tarsata NYLANDER, 1848

I N: 88 - 27 VII 1868, o and o leg. WIERZEJSKI. 92 - 12 VII - 4 VIII 1939, 3 oo and 6 oo leg. ZABŁOCKI.

47. Andrena labiata FABRICIUS, 1781 I S: 95 - 26 VI 1972, 9 on Taraxacum officinale.

48. Andrena marginata FABRICIUS, 1776 I S: 95 - MOCSÁRY (1918)

49. Panurgus banksianus (KIRBY, 1802)

I N: 85 - 6 VIII 1933, 2 ∞ leg. ZABŁOCKI. 92 - 16-22 VII 1939, 24 ∞ and 16 or leg. ZABŁOCKI. 94 - 21 VII 1960, 9 ∞ and 8 or on *Hieracium*. 82 - 29 VII 1967, φ on *Hieracium*.

IS: 95 - 26 VI 1972, 8 00 on Hieracium. 105 - 20 VII 1977, 9 and 3 of on Leontodon.

II N: 39 - 5 VII 1967, 9 and 2 of. 41 - 27 VII 1967, 9 on Potentilla. 43 - 3 VII 1967, of on Hieracium. 58 - 29 VI 1969, 2 of on Hieracium.

II S: 63 - 21 VI 1972, of on Leontodon. 69 - 19 VII 1967, q and 2 of on Leontodon. 75 - 23 VII 1977, of on Leontodon.

III S: 33 - 30 VI 1972, 9 and 2 of on Leontodon.

IV N: 1 - 4 VII 1967, 9 on Hieracium.

IV S: 7 - 12 IX 1974, o on Hieracium.

50. Panurgus calcaratus (SCOPOLI, 1763) II S: BELÁKOVÁ (1980).

Halictidae

51. Halictus quadricinctus (FABRICIUS, 1776) I N: 86 - 5 VIII 1919, 9 (NOSKIEWICZ 1920)

52. Halictus rubicundus (CHRIST, 1791)

IS: 95 - 29 V 1973, o on Taraxacum officinale and 16 IX 1973, o on Hieracium. 105 - 17 V 1985, 4 oo on Taraxacum officinale and 1 IX 1979, o on Thymus. 107 - 13 IX 1979, 3 oo and 3 oo on Scabiosa and Hieracium. 108 - 12 IX 1979, o on Scabiosa.

II S: 69 - 14 V 1985, o on Salix. 71 - 20 V 1985, o on Taraxacum officinale. 75 - 23 VII 1977, o on Leontodon.

53. Halictus tetrazonius (KLUG, 1817) I N: 87 - 5 VIII 1919, 9 (NOSKIEWICZ 1920)

54. Halictus simplex BLUTHGEN, 1923

IS: 104 - 12 IX 1979, on Cichorium inthybus. 107 - 13 IX 1979, 6 oo and o on Scabiosa. 108 - 15 IX 1979, o on Scabiosa. 109 - 23 V 1985, o on Salix fragilis. 55. Halictus eurygratus BLUTHGEN, 1930 II S: BELÁKOVÁ (1980).

56. Halictus tumulorum (LINNAEUS, 1758)

I N: 92 - 18 VII and 22 VIII 1939, 2 op leg. ZABŁOCKI. 88 - 14 VII 1908, op leg. ŚNIEŻEK.
I S: 95 - 29 V 1973, 5 op on Taraxacum officinale and Veronica chamaedris. 105 - 17 V 1985, op on Salix fragilis. 107 - 12 and 13 IX 1979, 3 op and op on Hieracium. 108 - 13 IX 1979, op on Hieracium. 109 - 23 V 1985, 2 op on Salix fragilis.

II S: 69 - 3 IX 1979, o on Hieracium. 71 - 20 V 1985, 2 oo on Taraxacum officinale. 72 - 30 VII 1977, o on Potentilla.

57. Halictus confusus alpinus ALFKEN, 1907

I N: 92 - 18 VII 1939, o leg. ZABŁOCKI.

I S: 95 - 29 V 1973, o on Veronica chamaedris. 105 - 1 IX 1979, 2 o on Thymus. 107 - 19 IX 1979, o on Hieracium. 109 - 20 V 1985, o on Taraxacum officinale and 23 V 1985, o on Salix fragilis.

II S: 69 - 3 IX 1979, d on Hieracium.

58. Lasioglossum quadrinotatum (KIRBY, 1802) II S: BELÁKOVÁ (1980).

59. Lasioglossum zonulum (SMITH, 1848)

IN: 92 - 20 VIII 1939, 9 and 2 of leg. ZABŁOCKI.

I S: 102 - 28 VI 1972, 9 on Hieracium. 105 - 20 VII 1977, 9 on Leontodon. 107 - 13 IX 1979, 9 on Hieracium.

60. Lasioglossum leucozonium (SCHRANK, 1781)

I N: 88 - 6 VIII 1907, o leg. ŚNIEŻEK. 92 - 5 and 22 VIII 1939, 5 oo leg. ZABŁOCKI. 94 - 21 VII 1965, o.

IS: 95 - 22 VI 1972, 9 and 16 IX 1974, o on *Hieracium*. 102 - 28 VI 1972, 9 on *Hieracium*. 105 - 20 VII 1977, 9 on *Leontodon*. 107 - 12 IX 1979, o on *Hieracium*.

- II N: 59 6 VIII 1967, 9 on Hieracium.
- II S: 63 21 VI 1972, 9 on Leontodon. 71 2 IX 1979, o on Calluna vulgaris. 75 29 VII 1977, 9 on Leontodon.

61. Lasioglossum calceatum (SCOPOLI, 1763)

I N: 79 - 12 V 1971, φ and 27 VII 1967, φ and 9 or on Urtica. 80 - 27 VII 1967, 2 $\varphi \varphi$ on Hieracium. 84 - 14 V 1967, φ on Tussilago farfara. 87 - 27 VI 1970, φ on Veronica chamaedris. 92 - 17-19 VII 1939, 2 $\varphi \varphi$ and 5, 8 and 20 VIII 1939, φ and 9 or leg. ZABŁOCKI. 94 - 9 VIII 1970, φ on Veronica chamaedris.

I S: 97 - 13 V 1975, 2 oo Neronica chamedris. 95 - 29 V 1973, 7 oo n Potentilla aurea and Taraxacum officinale. 101 - 28 VI 1973, o. 102 - 27 VI 1972, o n Hieracium. 105 - 17 V 1985, 5 oo n Taraxacum officinale and 20 VII 1977, o na Leontodon. 107 - 11 V 1985, 2 oo n Salix and 12 IX 1979, o and 3 oo n Hieracium. 109 - 23 and 29 V 1985, 4 oo n Salix fragilis.

II N: 39 - 5 VII 1967, 9 9 and 0 on Hieracium. 40 - 29 VII 1967, 9 on Hieracium. 43 -13 V 1967, 6 9 on Tussilago farfara. 46 - 18 VI 1967, 9 on Taraxacum officinale. 47 - 16 V 1971, 2 oo on Gagea lutea. 51 - 26 VI 1970, o on Veronica chamaedris. 54 - 8 VI 1967, o on Taraxacum officinale. 56 - 19 VI 1970, 2 oo on Taraxacum officinale and Potentilla aurea and 25 VI 1969, o on Hieracium. 58 - 16 V 1971, o on Vaccinium myrtillus.

- II S: 62 29 VI 1972, 2 oo n Leontodon. 63 21 V 1973, o and 11 IX 1974, 4 of on Hieracium and Calluna vulgaris. 64 - 29 V 1973, o. 65 - 21 VI 1972, o on Hieracium pilosella. 68 - 20 VII 1969, 2 oo n Hieracium. 69 - 20 V 1985, o on Salix auricula. 71 - 20 V 1085, o on Taraxacum officinale and 29 VII 1977, o on Leontodon. 72 - 20 VII 1977, 7 oo n Leontodon. 75 - 23 VII 1977, 2 oo n Leontodon. 75 - 23 VII 1977, 2 oo n Leontodon. 76 - 16 V 1985, 3 oo on Taraxacum officinale. 77 - 16 and 25 V 1985, 4 oo n Tussilago farfara and Salix aurita and 25 VII 1977, o on Leontodon and 6 IX 1979, of on Hieracium.
- III N: 21 18 VI 1969, o on Hieracium.

III S: 33 - 30 VI 1972, o on Leontodon. 37 - 11 V 1985, 3 oo on Tussilago farfara.

62. Lasioglossum albipes (FABRICIUS, 1781)

- I N: 79 27 VI 1967, o and 2 of on Chamaenerion angustifolium. 81 25 VII 1969, o on Potentilla. 82 29 VII 1967, of on Potentilla. 87 4 VIII 1968, o and 2 of on Hieracium and 26 VI 1971, o on Hieracium. 88 17 VI 1969, 3 o on Hieracium. 89 26 V 1988, o on Salix. 90 25 VI 1976, o on Hieracium. 91 16 VII 1987, o on Knautia arvensis. 92 18-24 VII 1939, o and 8 of leg. ZABŁOCKI. 93 11 V 1967, 2 o on Tussilago farfara. 94 21 VII 1967, 5 o.
- I S: 95 29 V 1973, 9 ∞ on Potentilla aurea, Taraxacum officinale and Veronica chamaedris. 97 - 30 V 1973, ∞ on Taraxacum officinale. 105 - 17 V 1985, ∞ on Salix fragilis and 20 VII 1979, 3 ∞ on Leontodon. 107 - 12 and 13 IX 1979, 5 ∞ and 6 $\sigma\sigma$ on Scabiosa and Leontodon. 108 - 13 IX 1979, 2 $\sigma\sigma$ on Leontodon and Scabiosa.
- II N: 39 5 VII 1967, 5 φ , 40 29 V 1967, 2 φ on Potentilla aurea and Hieracium. 43 13 IV 1967, 16 φ on Tussilago farfara and Potentilla. 44 12 V 1967, φ on Salix. 45 13 V 1971, φ . 46 9 VIII 1968, 2 or on Astrantia. 47 16 V 1967, φ on Gagea lutea and 8 VIII 1968, σ on Hieracium. 49 26 VI 1971, φ on Hieracium. 51 17 V 1969, φ on Lotus corniculatus and 26 VI 1971, φ on Veronica chamaedris. 53 19 VI 1970, φ on Potentilla aurea. 54 8 VI 1967, 2 φ on Taraxacum officinale and 15 V 1967, φ on Potentilla aurea, Rannunculus and Taraxacum officinale. 41 27 VII 1967, φ on Chamaenerion angustifolium.
- II S: 61 29 VI 1972, 4 φ on Hieracium and Leontodon. 63 21 V 1973, 4 φ on Leontodon and 21 VI 1972, 6 φ on Leontodon and 11 IX 1974, 27 σσ on Hieracium. 64 22 VI 1972, 8 φ on Leontodon and 29 V 1973, 6 φ. 68 28 V 1985, 4 φ on Taraxacum officinale. 69 20 V 1985, φ on Salix aurita and 19 VII 1977, φ on Leontodon and 3 IX 1979, σ on Chamaenerion angustifolium. 71 20 V 1985, 12 φ on Taraxacum officinale and 2 IX 1979, φ. 72 20-22 VII 1977, 13 φ on Leontodon. 74 17 V 1985, 2 φ on Salix aurita. 75 23 VII 1977, 7 φ on Leontodon. 76 16 V 1985, 2 φ on Leontodon. 77 22 VII 1977, 8 φ and σ on Leontodon and 6 IX 1969, φ and 7 σσ of Hieracium and 7 IX 1979, σ on Cichorium inthybus.

III N: 17 - 19 VIII 1971, φ. 21 - 18 VI 1969, 3 φ on Hieracium and 26 VI 1971, φ. 25 -21 VI 1970, φ on Taraxacum officinale. 26 - 12 VIII 1973, σ. 28 - 19 VI 1969, 2 φ on Potentilla aurea. 29 - 6 VI 1967, φ on Taraxacum officinale and 19 VIII 1967, 3 σσ on Hieracium.

- III S: 32 26 VI 1972, 2 ∞ on Veronica chamaedris and Hieracium pilosella. 33 30 VI 1972, 3 ∞ on Leontodon. 34 - 30 VI 1972, 3 ∞ on Hieracium. 35 - 29 V 1974, 3 ∞ on Taraxacum officinale and 22 V 1975, 4 ∞ on Salix aurita and 30 VI 1977, \circ on Hieracium and 13 IX 1974, 2 $\sigma\sigma$ on Hieracium.
- 63. Lasioglossum laticeps (SCHENCK, 1868) I N: 87 - 5 VIII 1920, o (NOSKIEWICZ 1920). II S: BELÁKOVÁ (1980).

64. Lasioglossum fulvicorne (KIRBY, 1802)

- I N: 89 16 V 1988, o. 91 16 VII 1987, o. 92 20 and 21 VII 1939, 2 or and 11 VIII 1939, 4 or leg. ZABŁOCKI.
- I S: 95 29 V 1973, 5 ∞ on Veronica chamaedris. 105 17 V 1985, \circ on Salix fragilis and 20 VII 1977, \circ on Leontodon and 1 IX 1979, σ on Thymus. 106 - 7 IX 1979, σ on Primula.

II S: 65 - 15 IX 1974, ♂ on *Hieracium*. 69 - 11 and 20 V 1985, 9 ∞ on *Salix aurita* and 3 IX 1979, ♂ on *Hieracium*. 71 - 20 V 1985, 2 ∞ on *Taraxacum officinale* and 2 IX 1979, ♂ on *Calluna vulgaris*. 72 - 30 VII 1977, ♂. 74 - 17 V 1985, 2 ∞. 76 - 16 V 1985, o on *Vaccinium myrtillus*.

III N: 25 - 17 IX 1955, ç.

III S: 35 - 19 VII 1974, o on Hieracium.

65. Lasioglossum fratellus (PÉREZ, 1903)

- I N: 87 4 VIII 1968, o and 2 of on *Hieracium*. 89 16 V 1988, o on *Salix* and 20 VII 1987, o on *Veronica*. 91 11 VII 1987, o on *Campanula patula*. 93 11 V 1971, 2 o on *Tussilago farfara*.
- I S: 95 23 V 1973, o on *Taraxacum officinale* and 19 IX 1974, o on *Hieracium*. 99 27 VI 1972, o on *Hieracium*. 106 1 IX 1979, o on *Prunella*. 107 12 IX 1979, o. 108 13 IX 1979, o on *Scabiosa*.
- II N: 40 29 VII 1967, of on Hieracium. 41 27 VII 1967, of on Chamaenerion angustifolium. 43 13 V 1967, of on Tussilago farfara. 44 12 V 1967, 2 of on Salix, 45 12 V 1967, of on Potentilla aurea and 12 V 1971, of 47 16 V 1967, 20 of Gagea lutea. 49 26 VI 1971, 2 of on Hieracium. 53 19 VI 1970, 3 of on Potentilla aurea. 55 14 V 1971, of on Crocus scepusiensis. 56 19 VI 1970, 10 of on Rannunculus, Taraxacum officinale and Potentilla aurea. 58 11 VII 1987, of on Campanula.
- II S: 63 11 VI 1972, o on Leontodon and 11 IX 1974, o on Hieracium. 65 21 V 1973, o on Taraxacum officinale. 68 - 28 V 1985, 2 oo on Taraxacum officinale. 69 - 11 V 1985, 5 oo on Salix aurea and 3 IX 1979, o on Scabiosa. 70 - 20 V 1985, 3 oo. 71 - 29 VII 1977, o and 2 IX 1979, 3 oo on Calluna vulgaris. 72 - 19 and 30 VII 1977, 2 oo

II N: 39 - 5 VII 1967, 3 . 45 - 13 V 1971, 9. 56 - 19 VI 1970, 3 . on Taraxacum officinale.

on Leontodon and Campanula. 73 - 14 IX 1973, 11 of on Campanula. 76 - 15 V 1975, 3 90 on Potentilla and Taraxacum officinale. 77 - 25 V 1985, 9 on Tussilago farfara.

- III N: 12 13 V 1967, 7 ∞ on Gagea lutea and Potentilla. 13 8 VIII 1968, 2 $\sigma\sigma$. 14 12 and 16 V 1967, 2 ∞ Gagea lutea and 7 VII 1968, 4 $\sigma\sigma$ and 7 and 8 VIII 1968, 14 $\sigma\sigma$ on Hieracium. 15 - 7 VIII 1971, 2 ∞ and σ on Potentilla erecta. 16 - 15 V 1967, 2 ∞ on Tussilago farfara and 4 VIII 1968, 2 ∞ on Hieracium. 17 - 5 VIII 1968, 18 $\sigma\sigma$ on Campanula. 19 - 24 VI 1969, 2 ∞ on Hieracium and 10 VII 1968, σ and 10 VIII 1967, 2 $\sigma\sigma$ and 20 VIII 1971, σ on Potentilla. 21 - 26 VI 1967, ϕ and 18 VI 1969, 2 ∞ on Potentilla. 22 -20 VI 1970, 2 ∞ on Taraxacum officinale. 25 - 26 VII 1971, σ on Hieracium. 29 - 5 and 19 VIII 1967, 3 ∞ and 8 $\sigma\sigma$ on Potentilla and Hieracium. 30 -19 VI 1969, 3 ∞ on Potentilla aurea and Vaccinium vitis idea and 22 VI 1970, ϕ on Vaccinium vitis idaea.
- III S: 32 21 VI 1972, o on Hieracium pilosella. 35 22 V 1973, o on Salix. 38 25 V 1985, o on Tussilago farfara.
- IV N: 1 2 VII 1971, σ on Hieracium. 2 5 VIII 1968, 4 φ and 8 σσ on Hieracium and 18 VIII 1967, 14 σσ on Hieracium. 3 - 21 VI 1970, φ on Taraxacum officinale. 4 - 19 VIII 1967, σ on Hieracium. 5 - 19 VI 1969, 2 φ on Vaccinium vitis idaea and 22 VI 1970, 9 φ on Vaccinium vitis idaea.
- IV S: 7 23 V 1973, φ on Salix. 9 15 V 1975, 6 $\varphi \varphi$ on Salix and 29 V 1973, φ on Salix. 11 - 7 IX 1979, 11 or on Campanula and Hieracium and Senecio.

66. Lasioglossum rufitarse (ZETTERSTEDT, 1838)

- ^IN: 84 31 VIII 1967, o on *Hieracium*. 89 20 VII 1987, 2 oo on Veronica. 92 22 VII 1939 and 4 VIII 1939, 2 oo leg. ZABŁOCKI.
- IS: 97 13 V 1975, 2 ∞ on Salix and 30 V 1973, \circ on Taraxacum officinale.
- II S: 63 21 VI 1972, 2 \overline{op} on Leontodon and 11 IX 1974, \overline{op} on Hieracium. 69 19 VII 1977, \overline{op}.
- III N: 19 VI 1968, 9 on Potentilla.
- 67. Lasioglossum morio (FABRICIUS, 1793) II S: BELÁKOVÁ (1980).

68. Lasioglossum cupromicans (Pérez, 1903).

II N: 49 - 19 VII 1919, o (Noskiewicz 1920). 58 - 1 VIII 1919, o leg. Noskiewicz, det. J.D. Alfken and A. W. Ebmer.

69. Lasioglossum bavaricum (BLÜTHGEN, 1930)

II N: 53 - 19 VI 1970, 9 on Potentilla aurea. 56 - 19 VI 1970, 5 99 on Potentilla aurea and Taraxacum officinale, det. A.W. EBMER.

II S: 69 - 19 VII 1977, ç.

III N: 14 - 7 VIII 1968, o det. A.W. EBMER. 21 - 18 VI 1968, o on Potentilla erecta and 26 VI 1971, o det. A.W. EBMER. 28 - 19 VI 1969, o on Potentilla aurea.
 III S: 25 10 VI 1071.

III S: 35 - 13 IX 1974, o det. A.W. EBMER.

70. Lasioglossum villosulum (KIRBY, 1802)

I N: 92 - 22 and 23 VII 1939, 2 op and o leg. ZABŁOCKI. 88 - 26 VII 1923, 4 op leg. NOSKIEWICZ.

I S: 95 - 22 VI 1972, ♀ on Leontodon. 101 - 28 VI 1972, ♀ on Hieracium. 105 - 20 VII 1977, ♀ on Leontodon. 107 - 13 IX 1979, ♀ on Scabiosa.

II N: 58 - 1 VIII 1919, 9 (NOSKIEWICZ 1920)

II S: 63 - 11 IX 1971, o and o on *Hieracium*. 64 - 22 VI 1972, o on *Leontodon*. 72 - 22 VII 1977, 2 oo on *Leontodon*. 75 - 20 and 23 VII 1977, 4 oo on *Potentilla erecta*.

III S: 32 - 21 VI 1972, 2 ∞ on Veronica and Hieracium pilosella. 33 - 30 VI 1972, \circ on Leontodon. 35 - 13 IX 1974, \circ on Hieracium.

71. Lasioglossum leucopum (KIRBY, 1802)

I N: 87 - 4 VIII 1968, of on *Hieracium*. 92 - 17 and 23 VII 1939, 2 op leg. ZABŁOCKI. 94 - 21 VII 1965, 3 op.

I S: 95 - 29 V 1973, 9 on Potentilla. 105 - 3 IX 1979, 9 on Hieracium. 107 - 12 and 13 IX 1979, 3 99 on Potentilla aurea and Hieracium.

II S: 64 - 22 VI 1972, 9 on Leontodon. 69 - 3 IX 1979, 9 on Hieracium. 75 - 23 VII 1977, 9 on Leontodon.

72. Lasioglossum politum (SCHENCK, 1853) I N: stonepit (Zakopane) 28 VII 1919, φ (NOSKIEWICZ 1920).

73. Sphaecodes puncticeps THOMSON, 1870 I N: 92 - 18-22 VII 1939, 4 👳 leg. ZABŁOCKI. II S: BELÁKOVÁ (1980).

74. Sphaecodes crassus THOMSON, 1870 I N: 92 - 12 VII 1939, 9 leg. ZABŁOCKI.

75. Sphaecodes hyalinatus v. HAGENS, 1874 I N: 92 - 12 VII 1939, o leg. ZABŁOCKI.

76. Sphaecodes divisus (KIRBY, 1802)

I N: 92 - 12 VII 1939, 9 leg. ZABŁOCKI.

I S: 105 - 20 VII 1977, 9 on Leontodon and 1 IX 1979, 9 on Thymus.

77. Sphaecodes ferruginatus v. HAGENS, 1882 I N: 92 - 4 VIII 1939 and 18 IX 1939, 2 oo leg. ZABŁOCKI.

78. Sphaecodes miniatus v. HAGENS, 1882 I N: 92 - 12-23 VII 1939 and 5 VIII 1939, 2 $\varphi \varphi$ leg. ZABŁOCKI. II S: 63 - 21 VI 1972, φ . 72 - 30 VII 1971, φ on Leontodon.

79. Sphaecodes fasciatus v. HAGENS, 1882 I N: 92 - 12 VII 1939 and 5 VIII 1939, 6 oc leg. ZABŁOCKI.

80. Dufourea halictula (NYLANDER, 1848) II S: BELÁKOVÁ (1980).

81. Dufourea dentiventris (NYLANDER, 1848) I N: 91 - 16 VII 1987, 2 σσ on Campanula patula. 94 - 21 VII 1965, φ. II S: 71 - 29 VII 1977, φ on Leontodon. 75 - 23 VII 1977, σ on Leontodon. 82. Dufourea vulgaris SCHENCK, 1879 I N: 92 - 12-18 and 8 VIII 1939, 27 φ and 11 σσ leg. ZABŁOCKI. I S: 107 - 13 IX 1979, σ. III N: 16 - 27 IX 1974, 2 φ on Hieracium. 19 - 29 VIII 1974, φ on Hieracium. III S: 35 - 13 IX 1974, 3 φ on Hieracium.

83. Rhophitoides canus EVERSMANN, 1852 I S: 98 - MOCSÁRY (1918).

Melittidae

84. Melitta haemorrhoidalis (FABRICIUS, 1775) I N: 86 - 5 VIII 1920, ç (NOSKIEWICZ 1920). I S: 105 - 20 VII 1977, 2 çç on Campanula.

85. Macropis labiata (FABRICIUS, 1804) I S: 65 - MOCSÁRY (1918).

86. *Macropis fulvipes* (FABRICIUS, 1804) II S: 65 - MOCSÁRY (1918).

Megachilidae

87. Trachusa serratulae (PANZER, 1805)

I N: 85 - 13 VII 1933, o leg. ZABŁOCKI. 88 - 30 VII 1905, o leg. ŚNIEŻEK. 92 - 17-20 VII 1939, 3 og and 3 oo leg. ZABŁOCKI.

IS: 105 - 20 VII 1977, 2 00 and 11 of on Chamaenerion angustifolium.

II S: 69 - 19 VII 1977, φ and 2 of on Lotus corniculatus and Lathyrus. 72 - 22 and 30 VII 1977, 2 $\varphi \varphi$ and 4 of on Lathyrus and Thymus. 75 - 25 VII 1977, 2 $\varphi \varphi$ and 5 of on Lotus corniculatus. 77 - 23 and 25 VII 1977, 2 $\varphi \varphi$ and 6 of on Lotus corniculatus.

88. Anthidium manicatum (LINNAEUS, 1758) I N: 89 - 20 VII 1987, 4 ∞ and σ on Stachys. 91 - 16 VII 1987, σ on Stachys pratensis. II S: 69 - 19 VII 1977, σ .

89. Anthidium montanum MORAWITZ, 1864 I N: 88 - 17 VI 1967, o on Lotus corniculatus. 92 - 17 VII 1939, o leg. ZABŁOCKI. I S: 95 and 103 - MOCSÁRY (1918). III S: 35 - 30 VI 1972, 4 oo n Lotus corniculatus.

90. Anthidium puctatum LATREILLE, 1809 I S: 105 - 20 VII 1977, 2 99 on Trifolium pratense and Campanula and 3 or on Lamnium rubrum.

91. Anthidiellum strigatum (PANZER, 1805) I N: 92 - 15 and 17 VII 1939, 9 and 2 of leg. ZABŁOCKI. II S: 75 - 23 VII 1977, d.

92. Stelis ornatula (KLUG, 1807) I N: 92 - 20 VII 1939, o leg. ZABŁOCKI. II N: 58 - 29 VI 1969, o on Hieracium.

93. Chelostoma maxillosum (LINNAEUS, 1769)

II N: 58 - 29 VI 1969, 4 or. 55 - 27 VI 1969, 7 or. 40 - 29 VII 1967, 9 on Hieracium. II S: 62 - 29 VI 1972, 9 on Leontodon. 72 - 30 VII 1977, o.

III N: 21 - 26 VI 1974, 9 and 0.

94. Chelostoma nigricorne NYLANDER, 1848

I N: 39 - 25 VI 1969, 2 oo and o on *Campanula* and 20 VII 1987, o on *Campanula*. 91 -16 VII 1987, 13 oo and 5 or on *Campanula patula*. 81 - 25 VII 1969, 2 or on *Potentilla*. II N: 58 - 29 VI 1969, o and o.

II S: 63 - 21 VI 1972, d on Campanula. 69 - 19 VII 1977, d.

95. Chelostoma florisomne (LINNAEUS, 1758)

I N: 89 - 25 VII 1969, of on Campanula and 20 VII 1987, of on Campanula. 91 - 19 VII 1987, 2 oo and 3 of on Campanula patula. 92 - 17 VII 1939, o leg. ZABŁOCKI. 80 - 27 VII 1967, of on Campanula.

II N: 40 - 29 VII 1967, 9 and 2 00 on Hieracium. 58 - 29 VI 1969, 0 on Hieracium.

II S: 69 - 19 VII 1977, φ and σ on Campanula.

96. Osmia rufa (LINNAEUS, 1758)

I N: 88 - 18 V 1988, 2 op on Primula. 89 - 16 V 1988, 9 and 6 of on Vaccinium myrtillus. 93 - 11 V 1967, 2 op on Tussilago farfara.

97. Osmia parietina CURTIS, 1828 I N: 89 - 21 VII 1967, of on Leontodon. II N: 58 - 19 VI 1969, of and 16 V 1971, o.

98. Osmia leaiana (KIRBY, 1802)

I N: 88 - VII 1914, 9 leg. ŚNIEŻEK and 19 VII 1969, 9 on Lathyrus pratensis. 89 - 20 and 21 VII 1987, 9 and σ on Cirsium and Hieracium.

I S: 98 - MOCSÁRY (1918).

II N: 58 - 9 VI 1969, J.

99. Osmia leucomelaena (KIRBY, 1802) II S: 75 - 23 VII 1977, 2 99 on Lotus corniculatus.

100. Osmia inermis (ZETTERSTEDT, 1838)

II N: 48 - 9 VIII 1920, o on Vaccinium myrtillus (NOSKIEWICZ 1920). 58 - 1 VIII 1919, o (NOSKIEWICZ 1920).

101. Osmia uncinata GERSTACKER, 1869 II S: BELÁKOVÁ (1980).

102. Osmia fulviventris PANZER, 1798) I N : 86 - 5 VIII 1920, ♀ (NOSKIEWICZ 1920). 103. Osmia adunca (PANZER, 1798) I N: 89 - 5 VIII 1920, 9 (NOSKIEWICZ 1920).

104. Osmia anthocopoides SCHENCK, 1853

IN: 86 - 5 VIII 1920, 9 (NOSKIEWICZ 1920).

IS: 95 - 22 and 26 VI 1972, 9 and o on Echium vulgare. 105 - 20 VII 1977, 3 99 and 4 oo on Leontodon.

105. Osmia villosa (SCHENCK, 1853)

I N: 89 - 20 VII 1987, o on Cirsium and 17 VI 1969, 2 oo on Lathyrus pratensis. II N: 41 - 27 VII 1967, o on Potentilla. 49 - 19 VII 1920, o (NOSKIEWICZ 1920).

II S: 69 - 17 VII 1977, o on Lotus corniculatus. 72 - 22 VII 1977, o on Leontodon. III S: 35 - 13 IX 1974, o.

106. Megachile alpicola ALFKEN, 1924

I N: 88 - 18 VII 1923, o leg. FUDAKOWSKI. 89 - 20 VII 1987, o on Leontodon. 92 - 19 VII
 1939, o leg. ZABŁOCKI.

IS: 107 - 29 VII 1979, 9 on Medicago and 13 VIII 1979, 9 on Hieracium.

II S: 77 - 25 VII 1977, 9 on Lotus corniculatus.

107. Megachile versicolor SMITH, 1844.

IN: 87 - 19 VIII, 9 leg. WIERZEJSKI (WIERZEJSKI 1874: as Megachile octosignata NYL.).

108. Megachile ligniseca (KIRBY, 1802)

IN: 91 - 16 VII 1987, 9 on Vicia silvestris. 88 - 28 VII 1919, 9 (NOSKIEWICZ 1920).

II S: 63 - 11 IX 1974, 9 on Centaurea.

109. Megachile lapponica THOMSON, 1872 II S: 65 - MOCSÁRY (1918)

110. Megachile analis NYLANDER, 1852

IS: 103 - MOCSÁRY (1918).

II S: 65 - MOCSÁRY (1918).

111. Megachile willoughbiella (KIRBY, 1802)

I N; 88 - 17 VI 1969, of on Lathyrus pratensis and 12 VII 1908, of leg. SNIEŻEK. 89 - 21 VII 1987, of on Cirsium. 91 - 16 VII 1987, of on Vicia silvestris. 92 - 19 and 24 VII 1939, ² of leg. ZABŁOCKI.

IS: 105 - 20 VII 1977, o on Anthylis vulneraria. 107 - 12 IX 1979, o and 2 of on Lotus corniculatus.

II N: 50 - 20 VII 1923, 9 leg. FUDAKOWSKI.

II S: 77 - 23 and 25 VII 1977, 9 and 2 of on Lotus corniculatus.

112. Megachile maritima (KIRBY, 1802) I N: 86 - 5 VIII 1919, ç (NOSKIEWICZ 1920)

113. Megachile circumcineta (KIRBY, 1802) I N: 92 - 16 and 24 VII 1939, 2 ∞ leg. ZABŁOCKI. I S: 98 and 103 (MOCSÁRY 1918).

M. DYLEWSKA

114. Megachile nigriventris SCHENCK, 1868⁽¹⁾

I N: 2 op ex coll. RADOSZKOWSKI. 85 - 13 VII 1933, of leg. ZABŁOCKI. 88 - 18 VII 1933, of leg. ZABŁOCKI and 17 VI 1969, of and of on Lathyrus. 91 - 16 VII 1987, of on Salvia pratensis. 92 - 24 VII 1939, of leg. ZABŁOCKI.

IS: 97 - 30 V 1973, d.

II N: 56 - 25 VI 1969, ç.

II S: 77 - 25 VII 1977, ç.

115. Coelioxys rufescens LEPELETIER, 1825

I N: 88 - 30 VII 1909, o leg. ŚNIEŻEK. 89 - 20 VII 1987, o on Stachys. 91 - 16 VII 1987, o on Knautia arvensis.

II N: 48 - 9 VIII 1920, 9 (NOSKIEWICZ 1920)

116. Coelioxys quadridentata (LINNAEUS, 1758) I N: 92 - 17, 20 and 22 VII 1939, 4 ∞ and 2 of leg. ZABŁOCKI.

Anthophoridae

117. Nomada rufipes FABRICIUS, 1739 I N: 92 - 12 VII 1939, o leg. ZABŁOCKI.

118. Nomada bifasciata fucata PANZER, 1798 IV N: 2 - 5 VIII 1968, o on Hieracium.

119. Nomada emarginata MORAWITZ, 1877 I N: 92 - 17-21 VII 1939, 9 and 2 of and 3-4 VIII 1939, 2 of leg. ZABLOCKI.

120. Nomada roberjeotiana PANZER, 1799 I N: 92 - 12-23 VII and 4 VIII 1939, 2 ∞ and 2 $\sigma\sigma$ leg. ZABŁOCKI. II S: MOCSÁRY (1918).

121. Nomada obtusifrons NYLANDER, 1848 I N: 89 - 20 VII 1987, 2 oo. 92 - 12 VII - 5 VIII 1939, 2 oo and 2 oo leg. ZABŁOCKI. 94 -21 VII 1985, 3 oo.

II N: 41 - 27 VII 1967, ♀ on Chamaenerion angustifolium. III N: 16 - 24 VII 1974, ♀ on Hieracium. 26 - 12 VIII 1973, 2 ♀.

122. Nomada striata FABRICIUS, 1973 I N: 87 - 27 Vi 1971, o on Hieracium. 92 - 12-16 VII 1939, 5 oo leg. ZABŁOCKI. I S: 98 - MOCSÁRY (1918).

123. Nomada obscura ZETTERSTEDT, 1838 II S: 74 - 17 V 1985, ♀ on Salix aurita.

¹ALFKEN (1936) reported from the Tatras *Megachile maaki* RADOSZKOWSKI, 1874, on the basis of the material collected by RADOSZKOWSKI and kept in the Museum of the Humboldt University in Berlin. As systematical status of this species has not yet been precisely determined I mention from the Tatras and Pieniny Mts. *Megachile nigriventris*.

212

124. Nomada flava PANZER, 1798 II S: 69 - 20 V 1985, o on Salix aurita.

125. Nomada panzeri LEPELETIER, 1841

IN: 84 - 14 V 1967, o. 92 - 12 VII 1939, o leg. ZABŁOCKI.

II N: 47 - 12 and 16 V 1967, 2 ∞ and 2 of on Gagea lutea and 25 V 1970, ∞ . 54 - 15 V 1967, ∞ on Vaccinium myrtillus. 53 - 19 VI 1970, ∞ .

II S: 63 - 21 VI 1972, o. 77 - 25 V 1985, o on Petasites.

III N: 12 - 13 V 1967, 7 od. 23 - 8 VI 1972, 9 on Potentilla aurea. 29 - 6 VI 1969, o on Taraxacum officinale.

III S: 35 - 30 VI 1972, o on Vaccinium vitis idaea.

IV N: 3 - 21 VI 1970, 2 qq. 5 - 19 VI 1969, q on Vaccinium vitis idaea and 22 VI 1970, q and 3 or on Vaccinium vitis idaea. 6 - 19 VI 1970, q.

126. Nomada leucophtalma (KIRBY, 1802) II N: 12 - 13 V 1967, q and 3 oo on Gagea lutea. II S: 69 - 20 V 1985, 2 oo. IV S: 9 - 15 V 1975, q on Salix.

127.Nomada bifida THOMSON, 1872 I S: 95 - 29 V 1973, o det. CELARY.

128. Nomada ferruginata (LINNAEUS, 1767)

IN: 87 - 27 VI 1971, 9 on Hieracium.

I S: 107 - 11 V 1985, 9 on Taraxacum officinale. 109 - 23 V 1985, 9 on Salix fragilis. II S: 63 - 21 VI 1972, 9. 71 - 20 V 1985, 9 on Taraxacum officinale.

129. Nomada flavoguttata (KIRBY, 1802) I N: 92 - 12-16 VII 1939, 7 φ and σ leg. ZABŁOCKI. I S: 95 - 29 V 1973, φ on Potentilla aurea. II N: 46 - 18 VI 1969, σ on Potentilla erecta. 58 - 19 VI 1969, 2 φ on Hieracium. III N: 21 - 18 VI 1969, σ on Potentilla erecta.

130. Nomada similis MORAWITZ, 1872 I N: 92 - 12-16 VII 1939, 2 \overline leg. ZABŁOCKI. II S: 63 - 21 VI 1972, 2 \overline .

131. Nomada mutabilis, MORAWITZ, 1871 I N: 88 - July (ŚNIEŻEK 1910). II S: BELÁKOVÁ (1980).

132. Nomada fabriciana (LINNAEUS, 1767) II N: 45 - 13 V 1971, o.

133. Nomada sexfasciata PANZER, 1799 I S: 95 - 22 VI 1972, 2 oo n Knautia arvensis.

134. Biastes truncatus (NYLANDER, 1848) I N: 92 - 12 VII-4 VIII 1939, 25 oo and o leg. ZABŁOCKI.

M. DYLEWSKA

135. Eucera longicornis (LINNAEUS, 1758)

I S: 101 - 26 VI 1972, 9 on Lotus corniculatus. 95 - 22 VI 1972, o.

136. Anthophora quadrimaculata (PANZER)

I N: 87 - 18 VIII 1988, 3 . 89 - 27 VIII 1987, 9 . and o on Stachys. 91 - 16 VII 1987, 2 o on Salvia pratensis

137. Anthophora acervorum (LINNAEUS, 1758)

I S: 107 - 9 and 22 V 1985, 2 oo and o.

II S: 64 - 29 V 1973, 3 dd.

138. Anthophora plagiata (ILLIGER, 1806)

IS: 103 - MOCSÁRY (1918)

II S: 65 - MOCSÁRY (1918).

139. Anthophora furcata (PANZER, 1798)

- I N: 79 29 VII 1967, o on *Ballota nigra*. 80 27 VII 1967, o. 89 20 VII 1987, o on *Cirsium*. 91 16 VII 1987, 4 oo on *Salvia pratensis*. 92 12 and 20 VII 1939, o and o leg. ZABŁOCKI.
- I S: 100 21 IX 1979, *q* on *Trifolium*. 101 28 VI 1972, *d*. 105 20 VII 1977, 2 *qq* and 2 *dd* on *Digitalis lutea*.

II N: 58 - 29 VI 1969, 9 and 2 of on Ballota nigra.

II S: 69 - 19 VII 1977, ϕ and σ on *Stachys*. 72 - 30 VII 1977, ϕ . 75 - 23 VII 1977, ϕ and σ on *Stachys*.

III S: 37 - 27 VII 1977, 2 od on Stachys.

V. FAUNISTIC ANALYSIS

1. Number of recorded localities and species

The author found 109 localities in zones I - IV (Fig. 1) in which the families of Apoidea under study occurred. In zones V - VI, however, only representatives of the family Apidae were found. The numbers of localities on the northern (64) and southern slopes (45) are not distributed evenly (Table II), the differences being particularly marked in zones II and III. In zone II the numbers were 22 and 17 respectively, while in zone III the number of localities on the northern slopes (19) was more than twice that on the southern ones (8). Differences in the number of localities in zones I and IV were far smaller. The differences in the number of localities between the northern and southern slopes, particularly in zones II and III, were not the consequence of less searching of the latter slopes.

The list of species collected in the Tatras comprises 139 representatives of Apoidea (excluding the family Apidae). Of these 139 species, 54 are new to the Tatras and to the sub-Tatra zone, including Hylaeus cardioscapus which is also new to the fauna of Poland. 29 species reported from the Tatras by the authors quoted in Chapter I were not found by the present author. These are the following species recorded from the northern slopes: Colletes daviesanus (ŚNIEŻEK 1910), Andrena nigriceps, Halictus quadricinctus, H. tetrazonius, Lasioglossum laticeps, L.cupromicans, L. politum, Osmia adunca, O. iner-

mis, O. fulviventris, and Megachile maritima (NOSKIEWICZ 1920) and from the southern slopes: Andrena limata, A. marginata, Rhophitoides canus, Megachile lapponica, Macropis labiata, M. vulvipes, Nomada armata (MOCSÁRY 1918), Hylaeus cornutus (BAL-THASAR 1952), Andrena varians, Panurgus calcaratus, Halictus eurygnatus, Lasioglossum pauxillum, L. quadrinotatum, L. morio, and Dufourea halictula (BELÁKO-VÁ 1980).

Out of the total number of species (139) recorded from the Tatras and from the sub-Tatra zone, more than half (87) are those collected exclusively either on the northern (39) or the southern slopes (48). Most of these species were caught in 1-2 localities and generally in small numbers (1 - 5 individuals), with the exception of four species found on N slopes (*Biastes truncatus* - 1 locality, 26 specimens; Osmia rufa - 3, 11; Andrena tarsata - 2, 11 and Anthophora quadrimaculata - 3, 15 and three on S slopes (Andrena combinata - 2, 13; Halictus rubicundus - 7, 17; H. simplex - 4, 10).

2. Number of species and individuals collected in the distinguished altitudinal zones and their abundance

Table II shows the number of species and individuals of the particular families of *Apoidea* (except the family *Apidae*) collected on the northern (N) and southern (S) slopes of the distinguished altitudinal zones. As can be seen from Table II, the family *Melittidae* is represented by 3 species and by the smallest number of specimens (7), recorded only in zones I N, I S, and II S. The other poorly represented family is *Colettidae*; altogether 46 specimens were caught belonging to 11 species in zones I, II and III N. Also the family *Megachilidae* occurred in the Tatras only up to and including zone III, i.e. in the lower part of the upper montane forest zone; 205 specimens from 28 species were collected. The remaining families of *Apoidea*, listed in Table II, *Andrenidae*, *Halictidae*, and *Anthophoridae* (39 species, 956 specimens), followed by *Halictidae* (33, 880), and *Anthophoridae* (23, 193).

With the increase in altitude the number of species and individuals caught in the particular altitudinal zone decreases. Altogether in zone I 1065 individuals were caught; this accounting for about 46,5% of the collected material (2291). In zone II - 820 individuals (about 36%); in zone III - 295 (12,5%); and in zone IV - 111 (about 5%). The numbers of species collected from zones I-IV were 115, 85, 26, and 9 respectively. In the particular zones I-IV on the northern slopes the author found 93, 43, 21, and 7 species, but on the southern ones 54, 74, 20, and 8 respectively. On the northern side the number of species gradually falls as the altitude rises but this is not the case on the southern side (Fig. 3). In zone I S the author caught fewer species than in zones I N and II S. The same feature was observed on Mt Babia Góra (DYLEWSKA 1966). This does not result from the number of collected individuals and of species was distinctly greater. On the other hand, in zone I in spite of a similar number of localities, the situation was reversed. In zone III the numbers of species captured on the two slopes are almost equal, though the number of

		Colle	tidae	tidae		Andre	nida	e		Halic	tidae	2		Meli	tidae	
High zone	1	N	S		1	N	;	S]	N		S]	N	180	S
a sooti box aa	sp	spm	sp	spm	sp	spm	sp	spm	sp	spm	sp	spm	sp	spm	sp	spm
	8	21	2	7	23	251	26	240	24	173	15	137	1	1	2	3
П	3	3	4	14	14	123	23	166	8	151	20	235	(110) 2 × (1)		3	3
III	1	1			9	90	7	44	7	97	7	45	sille)	254	183	6.80
IV	1 89			2.1	5	20	5	25	1	40	1	8	a 1	2	- 2.53	essi
v									1		1023					11013
VI	l oder		1.53				1.01									
Total of sp	10		5		27		31		27		24		1	1.000	3	
Total of spm		25		21		483	1	473		461		419		1		6
Total of sp			il e		1933	201.73	52.S.	1.22	200	sad	odid	0.89	1.230	10023	85.9	330
Total of spm	1993			720	ALC:		100	pale;								10.2
Total of localities			1.1.1.1.1					10.01		1.00	an din Arras		940	12.50	1000	1000

Number of species (sp) and specimens (spm) of the *Apoidea* families (exept and number of the localities in the granite (g)

localities in zone III N is more than twice that in zone III S. In zone IV the number of localities and species on the northern slopes is 6 and 7 respectively, while on the southern ones it is 5 and 8. In this zone the number of individuals was higher on northern (69) than on southern slopes (42).

3. Common species

Out of 139 species recorded from the Tatras and from the sub-Tatra zone, 12 may be considered as common because they were represented by 52 - 260 specimens each and were collected in 11 - 54 localities (Table III). These species are as follows: Lasioglossum fratellum (54 localities - 236 specimens), L. albipes (41 - 260), L. calceatum (36 - 115), Andrena lapponica (26 - 109), A. praecox (11 - 141), A. subopaca (35 - 68), A. bicolor (30 - 88), A. humilis (21 - 70), A. haemorrhoa (18 - 64), A. clarkella (11 - 52), A. coitana (20 - 71), and Panurgus banksianus (18 - 89). The above- mentioned species differed in the frequency of their occurrence, e.g. Andrena coitana and Panurgus banksianus were common only on the northern side of the Tatras, and Andrena clarkella and A. praecox only on the southern side. 27 species were recorded only once and as single specimens. The majority of species (104) were represented by 1 - 12 specimens collected in 1 - 8 localities, and 21 species by 13 - 44 specimens found in 5 - 17 localities. Biastes truncatus, which is one of the rarest species in the Polish fauna of Apoidea, was caught by ZABŁOCKI

Table II

٨	Megachilidae			A	nthoph	orida	ie		То	tal	Total		Local	ities ir	the T	atras	
٢	V	:	S	ľ	V	5	S	N	1	S	5	g		C	;	tot	al
sp	spm	sp	spm	sp	spm	sp	spm	sp	spm	sp	spm	N	S	N	S	N	S
23	87	10	36	14	92	9	17	93	625	54	440		323			17	15
11	29	15	48	7	28	9	21	43	334	74	486	2	7	21	10	22	17
2	4	2	5	2	3	3	6	21	195	20	100	5	7	14	1	19	8
				2	9	2	9	7	69	8	42	3	3	3	2	6	5
								1							ybe si		1.E
				1										1020			1.6.4
25		20		17		16		110		100				Alala	613		12.1
	113		92		131		65		1223		1068			1 23	11.11 J		1.69
									139					agaan)	Rig J		1 T
										2291				erch	5693	1.56	
		-										10	17	38	13	64	45

the family Apidae) in the Tatra high zones on the north (N) and south (S) slopes and calcareous (c) Tatra ranges

(22 specimens) in one locality (IN), while Anthophora quadrimaculata was found by the present author to the number of 15 specimens in three localities (IS).

4. Apoidea in the particular altitudinal zones

Table III shows the species of Apoidea (except the family Apidae) from the Tatras and from the sub-Tatra zone grouped according to the time of their appearance, i.e. early spring, late spring, and summer. The period of appearance of the particular bee species covers about two months but some early and late spring species produce two (Hylaeus communis, Andrena flavipes, A. gravida, A. minutula, A. minutuloidea, A. falsifica, A. semilaevis, A. subopaca, A. bicolor, and A. praecox) or three generations (species of the genera Halictus and Lasioglossum) and are observed also in summer and autumn. As can be seen from Table III the early spring bees were the most numerous, the greatest number of specimens being caught (1382), although as to number of species (45), they came second to the late spring ones. Among the early spring bees 9 species (Andrena lapponica, A. praecox, A. subopaca, A. bicolor, A. haemorrhoa, A. clarkella, Lasioglossum fratellum, L. calceatum, and L. albipes) were common ones. A further five species (Andrena falsifica, A. semilaevis, Lasioglossum fulvicorne, L. rufitarse, and Nomada panzeri) were captured in 8-18 localities to the number of 12-44 specimens each. The above-mentioned common species belonging the early spring group were found in zones I - IV (5 species), I - III

	estil et a kolonitation in the Target	- der			1	V.	5.566		
No	Species		I		II C	1	II	1	IV
	M La I M La Million and an Ind	1	spm	1	spm	1	spm	1	spm
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	Early spring species	1.68		81.0		11 (8)	15 1	135	
1	Colletes cunicularius	- 95		1	1		15		
2	Andrena haemorrhoa	5	26	3	9	1	1		
3	A. nigroaenea	1	1						
4	A. flavipes	1	1						
5	A. gravida						1.00	1	1
6	A. nitida			1.44					
7	A. cineraria	1	1						
8	A. bicolor	5	13	4	6	5	15	1	1
9	A. limata								
10	A. minutula					1	2		
11	A. minutuloides								
12	A. falsifica	s sé lég	er.,98	1	1	1	1		10.53
13	A. semilaevis		12.00	1	1	1	5		teoring
14	A.subopaca	7	13	11	37	9	28	1	1
15	A. jakobi	t i nati			esept.		oza).		1
16	A. rosae						1-00		
17	A. praecox	3	16	1	1		11.00		
18	A. lapponica	1	3	6	30	5	16	4	16
19	A. varians				8.,30		es uppe.		
20	A. apicata	1	1	1	1				
21	A. clarkella	1	4	1	2	1.20	od ee		e(\$30
22	A. ruficrus			39993 2019		(TU))		arik (s	
23	A. ventralis		No. of				1.00 (10) (10)	90.9000 90.999	
24	Halictus rubicundus		0003		rida.	7 (u.2.5	1.00	veline	99R

Number of localities (l) and specimens (spm) of spring, late spring zones (I–IV) on northern (N) and southern (S) slopes and

Table III

S I II III III			u aligan dan belar, a		To	tal			Tat	atras					
]	I	I	I	I	II	Г	v	١	1	5	5	1	g	(5
1	spm	1	spm	1	spm	1	spm	1	spm	1	spm	1	spm	1	spm
(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)
						2						.[83	See.		-08
								1	1	-	-	-	-	1	1
6	13	2	13					9	36	8	26	1	1	5	22
1	5							1	1	1	5	-		-	-
		1	1					1	1	1	1	?	?	?	?
						1.4		1	1	-	· _	-700	en tr ak.	1	1
		1	1			t.		-	-	1	1	?	?	?	?
								1	1	-	-	-	13.778 ()	-	-
3 ·	3	8	39.	3	9	1	2	15	35	15	53	6	18	16	54
1	1							-	-	1	1		-	-	(-
. 1	1	2	3					1	2	3	4	1	1	2	4
2	2		2	5.5				-	-	2	2	-	-	-	-
3	12	3	7					2	2	6	19	2	4	3	5
2	4	2	2	1	1			2	6	5	7	1	1	4	8
1	1	6	7	3				28	72	7	8	5	5	22	68
1	1			ε	2			-	-	1	1	-		-	-
1	3	1	1					-	-	2	4	1	1	· _	-
5	120	2	4					4	17	7	124		-	3	5
		4	10	4	19	2	15	16	65	10	44	8	39	17	67
		1	1		1			-	-	1	1	?	?	?	?
1	1	1	1			1	1	2	2	3	3	1	1	2	2
2	3	3	29	2	8	2	6	2	6	9	46	4	14	4	31
1	1	4	9	1	3			-	-	6	13	1	3	4	9
1	1							-	-	1	1	-	-	-	-
3	. 10	3	3					-	-	6	13	-		3	3

and summer Apoidea (except family Apidae) in the particular altitudinal in the granite (g) and calcareous (c) parts of the Tatras

(1)	(2)			(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
25	Halictus confusus alpinus			1	1		0.5225.5				
26	Lasioglossum calceatum			7	30	9	26	1	1		
27	L. albipes			11	29	13	58	6	13		TV
28	L. fulvicorne			3	8	3	7	1	1		
29	L. fratellum			4	8	11	50	11	74	5	40
30	L. rufitarse			3	5			1	1		
31	L. morio										
32	Sphecodes hyalinatus			1	1			133	15.	163 -	0
33	S. divisus			1	1					5	
34	S. fasciatus			1	6				1		
35	S. miniatus			1	6					$f \in \mathcal{L}_{1}$	
36	Osmia rufa			3	11						
37	O. uncinata										
38	Nomada bifasciata fuscata			5	11.2		183	1985	1.66,5	1	1
39	N. roberjeotiana			1	4						
40	N. obscura							121	122		
41	N. panzeri			2	2	4	14	2	2	3	8
42	N. bifida							1.5	121		C -
43	N. flava						L.				12.1
44	N. leucophtalma					1	4	N.	300		1.15
45	N. flavoguttana			1	8	2	3	1	1		
46	N. fabriciana					1	1				Ĩ.
47	Anthophora acervorum	11	÷	1	3			ži –	5		3
	Late spring species	23	- 8£ - 1	123	18.3	1215	500	1935	1.167		
48	Hylaeus confusus			3	3	1	1				
49	H. cardioscapus			4	5						
50	H. communis			2	8	81	1.52	102		- E.	5.5
51	H. cornutus						1	9			1
52	H. hyalinatus			1	1						
53	Andrena labialis			1	1			E I	E	01	

Apoidea of the Tatra Mountains

Table II	I ctd.
----------	--------

,

(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)
4	6	1	1					1	1	5	7	-	-	1	1
7	27	10	28	2	4			17	57	19	59	5	12	17	47
8	29	10	116	4	18	- 6		30	100	22	163	10	77	23	128
3	9	6	18	1	1			7	16	10	28	2	2	9	25
5	6	11	35	4	14	2	8	31	172	22	63	10	42	34	179
1	3	2	4	- 94	2	28		4	6	3	7	3	7	1	1
		1	1					-	-	1	1	?	?	?	?
						1		1	1	-		-	-	D-11	_
1	2						1	1	1	1	2	<u>enio</u> ec	-	-	-
								1	6	-	-	-	-	-	-
		2	2					1	6	2	2	1	1	1	1
	6.1					ė.		3	11	-	-	-		-	-
		1	1					-	-	1	1	?	?	?	?
						3		1	1	-	-	-	-	1	1
		1	1	d			1	1	1	1	1	1	1	-	2
1	1							-	-	1	1	-	-	-	-
		2	2	1	1	2	8	11	26	5	11	7	17	7	18
1	1	6						-	-	1	1	1000	-	-	-
		1	1			1		-	-	1	1	e <u>n</u> de		1	1
		1	2			1	1	1	4	2	3	1	1	2	6
1	1							4	12	1	1	-		3	4
								1	1	-	-	-	-	1	1
		1	3					1	3	1	3	1	3	-	-
												e se de con	in stand		1
		4	8	21	ŝ.			4	4	4	8	-	-	5	9
								4	5	-	-	1015 C	1000	-	-
				5				2	8	_	-	-	-	10000	-
		1	1				1	-	-	1	1	1	1	-	-
3	5	3	3					1	1	6	8	-	-	3	3
								1	1	-	-	_	a volais	-	-

(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
54	Andrena schencki		1	1				aren araderad		
55	A. combinata			30		7,6	KS	de.	27	
56	A. wilkella		1	6		19	de	13	00	
57	A. ovatula		3	3			1			
58	A. fucata		3	5	2	3	1	1		40
59	A. humilis		7	35	4	10				
60	A. labiata									
61	Halictus quadricinctus		1	1						
62	H. tetrazonius		1	1						
63	H. simplex			1						
64	H. eurygnatus			6						
65	H. tumulorum		2	3						
66	Lasioglossum quadrinostatum						1			
67	L. zonulum		1	. 3						1.000
68	L. leucozonium		3	7	1	1				
69	L. laticeps		1	1						T.
70	L. cupromicans		ň		2	2		2		
71	L. bavaricum				2	6	3	4		
72	L. villosulum		2	7	1	1				
73	L. leucopum		3	6		4				
74	L.politum		1	1	-					
75	Sphecodes puncticeps		1	4						
76	S. crassus	en lana	1	1						
77	S. ferruginatus		1	2						
78	Chelostoma maxillosum		3-	. 3	2	12	1	2		
79	C. nigricorne	6	2	2	1	2				
80	Osmia parietina	8	1	1	1	2				
81	O. leaiana		2	4	1	1				
82	O. leucomelanea		1				1			-E
83	O. intermis				2	2				

Apoidea of the Tatra Mountains

	Table III ctd.														
(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)
						1.1		1	1	-	-	-		-0	-
2	12	1	1					-	-	3	13	- ADARDA	-1	1	1
1	4	2		1.2	1.63	3.5		1	6	1	4	-	-	-	-
3	14	2	2		1	1.5	5.	3	3	5	16	2	2	is	-
1	1	4	15			1.0		6	9	5	16	2	4	5	15
7	20	5	6					11	45	12	26	2	4	5	12
1	1							-	-	1	1	-10		8.0 - 191	-
			1.2					1	1	-	-		-	-	-
		1						1	1	-	-	-	-	-	-
4	10							-	-	4	10		- 1	-	-
		1	1					-	-	1	1	?	?	?	?
5	16	3	4					2	3	8	20	-		3	4
		1	1					-	-	1	1	?	?	?	?
3	3							1	3	3	3	-		(i -))	-
4	5	3	3					4	8	7	8	2	2	2	2
		1	1					1	1	1	1	?	?	?	?
		. L.	0.0			1.1		2	2	-	-	- 18	() - ()	2	2
		1	1	1	1			5	10	2	2	2	2	5	10
4	5	4	9	3	4	8	14	3	8	11	18	4	7	4	7
3	5	3	3	1				3	6	6	8	1	1	2	2
		12		11	1	35		1	1	-	-	-		N -	-
		1	1				12	1	4	1	1	?	?	?	?
						. 1		1	1	-	-	-	-	-	2-1
						11	1	1	2	-	-	-	- 1	-	(-)
		2	2					3	14	2	2	1	1	4	15
1	2	2	2	115		60	4	3	4	3	4	1	1	2	3
								2	3	-	-		-	1	2
1	1							3	5	1	1	- 10	-	1	1
		1	2			i.		-	-	1	2	-	-	1	2
								2	2	-	-	-	-	2	2

(1)	(2)			(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
84	Osmia fulviventris			1	1						
85	O. anthocopoides			1	1					- 51	Ś
86	O. villosa			1	3	2	2				1
87	Anthidium montanum			2	2					63	
88	Megachile nigriventris			5	8	1	1	1			
89	Coelioxys quadrimaculata			1	6			1		20	
90	Nomada striata			2	6						
91	N. ferruginata			1	1						
92	N. mutabilis			1	1						
93	N. sexfasciata									Ġ\$	
94	Eucera longicornis										
95	Anthophora plagiata								5	đ.	18.5
1.	Summer species	1	-								
96	Colletes daviesanus	10	6	1	1						E.
97	Hylaeus signatus			1 .	1				1		
98	H. gibbus			1	1						
99	H. annulatus			1	1			1	1		
100	H. nigritus					1	1				
101	Andrena hattorfiana			4	8			9	6	5	
102	A. rufizona			1	1	1	1	3	1.2		
103	A. coitana			5	35	6	11	6	21		
104	A. denticulata			2	5						
105	A. nigriceps			1	1						
106	A. tarsata			2	11						
107	A. marginata							- 18 3	S		
108	Panurgus banksianus			4	60	4	10	12	2	1	1
109	P. calcaratus					1 2					
110	Rhophites canus			1.							
111	Dufourea dentiventris			2	3			1.5			
112	D. halictula					3					
Apoidea of the Ta

tra	Mountains	

												Та	ble	III ct	d.
(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)
		8				38		1	1	-	-	-		-	-
2	9						E.	1	1	2	9	10 - 10		94-38	(
		2	2	1	1			3	5	3	3	1	1	4	4
2	2			1	4			2	2	3	6	1	4	-	(-)
1	1	1	1			11	E.	6	9	2	2	1	1	1	1
						6	2	1	6	-	- 10	da-09	ales es tendi		
1	1		5					2	6	1	1		131 - 133	-	-
2	2	2	2			8	1	1	1	4	4	1	1	1	1
		1	1	4		1		1	1	1	1	?	?	?	?
1	2							-	-	1	2	-	(m. - . m.	6 C.	-
2	2							-	-	2	2		-		-
1	1	1	1					-	-	2	2	1	1	-	-
								-				- print	-	8	12.51
2	2					8		1	1	2	2	-	-	-	-
•								1	1	-	-	-	-	-	
								1	1	-	-	84 - .08		-	-
		2	2					2	2	2	2	-	k».	3	3
			1					1	1	-			0-1	1	1
1	2	2	4		1			4	8	3	6	1	1	1	3
				1				2	2	-	-	-		1	1
1	1	1	2	1	1	1	1	17	67	3	4	4	6	10	29
						5		2	5	-	-	-	·	-	-
				-1		0		1.	1	-	-	e		(-
				5		5		2	11	-	-	-	-	-	-
1	1					25	ε.	-	-	1	1	-	-	-	-
2	12	3	5	1	3	1	1	9	71	7	21	3	5	7	15
		1	1			83	1	-	-	1	1	?	?	?	?
1	1	181		13.6		1025	189	-	-	1	1	-	-	-	-
		2	2	2.6.2		200	AS I	2	3	2	2	-	-	2	2
	141	1	1	24	yht. 1	INT.	1.5	-	-	1	1	?	?	?	?
		CO. States	Section (Sec	at the reg	the set of	50 M 1				1. Sec. 1.	1999 (Sec. 1	1	1		1

(1)	(2)	(171)		(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
113	Duforea vulgaris	1	E.	1	38			2	3		
114	Melitta haemorrhoidalis			1	1					Q.,	5
115	Macropis labiata		÷.						2		
116	M. fulvipes		0							5	1.1
117	Trachusa byssina			3	11						
118	Anthidium manicatum			2	6						
119	A. punctatum										1
120	Anthidiellum strigatum		1	1	3			2			2
121	Chelostoma florisomne			4	9	2	4	1	2		
122	Osmia adunca			1	1					5	
123	Megachile alpicola			3	3					1	0
124	M. versicolor			1	1					1	
125	M. ligniseca			1	1						
126	M. willoughbiella			4	6	1	1			2	e e
127	M. maritima			1	1						
128	M. circumcineta			1	2						
129	M. analis							5	1		
130	M. lapponica										
131	Stelis ornatula			1	1	1	1	4	2	8	1
132	Celioxys rufescens			3	3	1	1				
133	Nomada rufipes			1	1		19	¢.,	33	<u>1</u>	1
134	N. emarginata			1	5						
135	N. obtusifrons			3	9	1	1				
136	N. similis			1	2	1	2				
137	Anthophora quadrimaculata			3	15						i.
138	A. furcata			5	9	1	3	8	8	83	
139	Biastes truncatus	-	-	1	26			1	1		
Total	number of species and specimens			93	625	44	334	21	195	8	69
Total	of early spring species and specin	nens	1	26	202	16	252	14	161	7	68
Total	of late spring species and specime	ens		33	141	16	46	3	7	ļ	
Total	of summer species and specimens			34	282	12	36	4	27	1	1

(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)
1	1			1	3			3	41	2	4	1	3	2	3
1	2	1	1	1.75		1727		1	1	2	3	1	1	-	-
1	1	• 1	1					-	-	2	2	1	1	-	-
		1	1					-	-	1	1	1	1	-	-
2	14	4	24					3	11	6	38	_		4	24
		1	1			in the second		2	6	1	1	-	-	1	1
and the second s		1	5		dad age of the				-	1	5	-		1	5
	7 10	1	1					1	3	1	1	-	12	1	1
								7	15		-	-	-	3	6
								1	1	-	-	-	-	-	-
1	2	1	1					3	3	2	3	-	. –	1	1
(here)	and of	tion -	hi sy q	enio.	01977			1	1	×	<u>~_</u>]	-		-	-
		1	1					1	1	1	1	1	1	_	-
2	2	1	3	a da anti-				5	7	3	5	_	_	2	4
		1.322354	1. Carlos	13.4.1	6000	de de		1	1	-	-	_	-	-	-
2	2							1	2	2	2	-	-	-	-
1	1	1	1					-	-	2	2	1	1	-	-
		1	1		in sector	-		-		1	1	1	1	-	_
		4-104						2	2	-	-	-	-	1	1
No. or N	and a	C. MARCH						4	4	-	-	-	-	1	1
		t ja					7.07	1	-1	-	-	-	-		-
								1	5	-	-	-	-	-	-
14.00	and to	railis	GOTY.	2	3			4	10	2	3	1	1	2	3
Mar	acte.	0.086	18/6				line.	2	4	-	-	1	2	- 1	-
								3	15	-	-	-	-	-	_
3	6	3	8	1	2			6	12	7	16	1	3	4	10
			asts -				10.691	1	26	-	-	-	-	-	_
64	440	74	485	19	100	8	42	110	1223	100	1067	49	311	66	905
27	266	30	344	10	78	7	41			A second					
23	144	24	75	4	10		0.000				0.45.1	1.11	1.200	(april)	100
14	40	20	66	5	12	1	1	0,003	9,0	908	2300	0.000		(iso)	5003

Numbers of specimens of early spring Andrena lapponica (A.l.), late spring A. humilis (A.h.), summer A. coitana (A.c.) and Panurgus banksianus (P.b.) collected during the vegetation season in particular high zones of the Tatras

		cies		North	slopes			South	slopes	
Month	Date	Spe	I	II	III	IV	I	II	III	IV
April	13	A.l.			200					
	11 14	A.l.	- 128	300	8çç			ď		
May	11-14	A.h.						ç		
may	15-20	A.l.	o 200	7ọọ 16ơơ	1000 200	ď		600 300	800 800	800 800
	15-20	A.h.						ರೆ		
	0_11	A.l.	paint			200				
	7-11	A.h.		ç			200 300			
June	-1995 in	A.l.	2.1	300		800 0	-		çơ	ę
	15-21	A.h.	900 1000	3çç		<u>1. 3.</u>	300	200 0		
		A.c.	Ŷ							
		P.b.		400			8çç	ď		
		A.l.				300				
	2-11	A.h.	8çç	o 200					Ŷ	
		A.c.	300 400							
July		<i>P.b.</i>			400				200	
	in open	A.l.				ę				
	15-21	A.h.	300 400				600 0			
		A.c.	400	400 0	300		Ŷ	300 0	Ŷ	
		<i>P.b.</i>		ರ		Ŷ	o 300	300 300	ç	
		A.h.					<u> </u>	Ŷ		
	1-14	A.c.		300	1400			216		
August		<i>P.b.</i>						o 200		
	15-30	A.h.	Ŷ	- 1 - 6	1.2.1	1.110	1	Ŷ		
	10 00	A.c.	300 đ	ę			122.11		6.11	
Sept.	12	P.b.		- 1-1						ď

(3 species), and in I - II (1 species). A total of 12 early spring species were recorded from zone I only, 14 from zones I and II, 9 from zones I - III, and 10 from zones I - IV.

Altogether 50 late spring species were found in the investigated area, of which only one (Andrena humilis) was common and occurred in zones I and II. 11 species of this group were represented by 11 - 26 specimens from 5 - 14 localities. The remaining species were rarer. 20 late spring species were recorded from zone I only, 22 from zones I and II, and 7 from zones I - III. A total of 427 specimens of late spring bees were caught. In the investigated area 44 species of summer bees were recorded, in number 474 specimens being collected. Two of these species (Andrena coitana and Panurgus banksianus) were regarded as common, the former occurring in zones I - III, the latter in zones I - IV. 8 summer species were represented by 13 -48 specimens from 1 - 11 localities. They are the following: Andrena hattorfiana, Chelostoma florisomne, Trachusa byssina, Megachile willoughbiella, Nomada obtusifrons, Anthophora furcata, A. quadrimaculata, and Biastes truncatus. The remaining summer species were recorded in 1 - 5 localities to the number of 1 - 7 specimens. Altogether 16 summer were found in zone I only, 20 in zones I - II, 5 in zones I - III, and 1 in zone I - IV.

The species composition of *Apoidea* changes distinctly during the vegetative season. Tables IV - VII show the numbers of females and males caught in successive months, in the determined periods (days) in the distinguished zones. The data in these tables come from the entire study period from different years.

Table IV gives the time of appearance of 4 common species: the early spring Andrena lapponica, late spring A. humilis, and summer A. coitana and Panurgus banksianus. As can be seen the earliest record of A. lapponica was 13 April in zone III while it was still observed in zone II in the second half of June. Thus, the species most likely appears in zones I - III in the first half of April and flies till the second half of June. On the other hand, in zone IV this species appeared in the second decade of May and on the northern slopes it was caught until the ent of July. The absence of A. lapponica on the southern slopes of zone I was probably due to the lack of forest and of its food plant Vaccinium in the recorded localities. Data from the southern slopes of zones II - IV were too few to allow a more detailed determination of the time of appearance, though the presence of A. lapponica females in zone IVS in the second half of May indicates that this species appears there earlier (at the beginning of May) than on the northern slopes of this zone. This conclusion results from the bionomics of the genus Andrena in which the males always appear earlier than the females. It is probably also for this reason that the late spring species Andrena humilis appears on the southern slopes as early as the second half of May and on the northern ones in the second half of June, being found on both slopes up to the second half of July, single specimens even being caught in August. From mid-June to the first half of August on the southern slopes and to the second half of that month on the northern slopes of the two montane forest zones summer species were observed which zones I - III flew simultaneously with late spring ones. Only in the first half of June was A. humilis observed unaccompanied by summer bees. In zone IV, with the early spring species a single summer species, Panurgus banksianus was found.

Table V shows the number of specimens caught of Andrena bicolor a species which produces two generations. On both northern and southern slopes the first generation was

Number of specimens of early spring Andrena bicolor $(q \sigma)$ appearing in two generations, collected during the vegetation season in particular high zones of the Tatras

	Ð.,		North	slopes	ana panana		South s	lopes	
Month	Date	I	II	III	IV	I	II	III	IV
April		191181-00		0002.02		3.000016	od aca	ando es	babriege
	11-14		3 <u>o</u>	ç			4ọọ	7çç	
мау	15-30			2ọọ			24ọọ	3çç	2çç
June	18			ç	1.2910-90	15/01/0	- gen often	an a da da	
Yester	10-14	600 600							
July	15-31	900 900	4ọọ ơ	ď		. ç	500 200		2.462
	5-10	oure stade	pressions.	o 400	ď	-2500.00	1-6-61-41-61	8.10.7)	Lendel
August	15-31	3ọọ	300	o 200		1.01.19	ď	g saga	
September	6						200		

Table VI

Number of specimens of early spring Lasioglossum fratellum appearing in three generations, collected during the vegetation season in particular high zones of the Tatras

	Ditte	1	North	slopes	ine Scene	South slopes					
Month	Date	Ι	II	III	IV	Ι	II	III	IV		
April				965 - 16 F							
Mari	11-15	200	1300	ç	it lo ca	5ọọ	5ọọ	Access B	destronos		
мау	16-31	ç	2300	3çç		10ọọ	10ọọ	2ọọ	8çç		
June	19-26		12ọọ	1100	1200	ç		ç			
	7-11	200	ď	500	ď	695 286	11.396	Sur and	TTO THE		
July	19-30	ç		ď		4ọọ ơ	4ọọ ơ				
	4-10	o 200	Étan Di sa	600 4100	400 800		ditive vis	mennik	leve ster		
August	18-20	the out	div N	600	1500	amua yo	bolanqu	10033308	oornaadic		
September	1-13	Greece et		THE REPORT		600	1600	1100			

Table VII

Number of specimens of early spring Lassioglossum calceatum (L.c.) and L. albipes (L.a.) appearing in three generations collected during the vegetation season in particular high zones of the Tatras

Month April	Date	Spe-		North	slopes			South s	lopes	
WORT	Date	cies	I	II	III	IV	I	II	III	IV
April	13	L.a.	240020	1600		1. 1990		null store	111-1	20.865
	1-14	L.c.	ç	600			200	3çç	3ọọ	
May	1.1.4	L.a.	2çç	200			1.000	i de moi		
	15-30	L.c.		2çç			1600	7ọọ		. 98 ⁷ T
	10.00	L.a.	ç	2ọọ			1200	3200	7 ₉₉	
in dans	1-14	L.c.		Ŷ	ę		1.000			
June		L.a.	(lange)	ç		di chi	it along	480 986	SHOOD	ide:e
June	15-31	L.c.	ę	6çç	Ŷ		200	300	ç	
-	10 01	L.a.	500	22ọọ	6çç		2000	1800	900	
	1-14	L.c.						900 0		
July		L.a.						500		
	15-31	L.c.	200				Ŷ	1500 900		
		L.a.	700 800				400	2100 200	Ŷ	201
	1-14	L.c.	3ọọ							
August	A STATE	L.a.	o 200	300	в				2.52125	
	15-30	L.c.	900							
	15-50	L.a.			ç 3bb				5 L. Au	
Sept.	1-12	L.c.					o 300	500		1.112.11
Cop.	1-14	L.a.					1300	200 3700	200	

caught in the first and second half of May, and in zone III still on 18 June. However, the males of A. bicolor probably appear in zones I - II in April on Crocus scepusiensis.

The second generation was observed on the northern slopes throughout July and in the second half of August. Because of the earlier appearance of the males, the whole period of appearance of the second generation lasts in zones I - II probably from the beginning of June, but in zone III from the second half of July until September. Records from the southern slopes were fewer, but nevertheless the author was able to establish there the occurrence of two generations of A. bicolor. Records from zone IV, for both slopes, were

too few to permit discussion on the number of generations occurring there. It would seem that on the southern slopes of this zone the presence of the first generation has been established but the single male specimen caught on the northern slopes in the first decade of August moght equally well have belonged to the first and only generation on these slopes as to the second one.

Data concerning the number of individuals and the time of appearance of the three species of the genus *Lasioglossum* are given in Tables VI and VII. On the southern slopes of zones I - II *L. fratellum* has distinctly three generations, this concerning also the other two species. Interpretation of data compiled in Tables VI and VII is difficult; nevertheless it can be seen that as the altitude rises the appearance of successive generations is delayed, while on the northern slopes only two generations occur.

The discussed species of the genus *Lasioglossum* (Tables VI and VII) belong to the early spring group. The late spring species of this genus occur in zones I S and II S in the Tatras only in two generations, of which the first was observed in the second half of June and in July and the second one in September. On the northern slopes, however, there probably occurs only one generation in the second half of July and in August.

VI. ZOOGEOGRAPHICAL ANALYSIS

1. Division into zoogeographical elements

15 groups of zoogeographical elements were found in the Tatra Mountains and in the sub-Tatra zone:

1) 6 Holarctic species (4,3%): Andrena wilkella, A. clarkella, Halictus rubicundus, Lasioglossum leucozonium, L. zonulum, L. rufitarse

2) 28 Palearctic species (20,2%): Colletes daviesanus, Hylaeus confusus, H. nigritus, Andrena haemorrhoa, A. cineraria, A. ovatula, A. rosae, A. humilis, A. ventralis, A. labiata, Halictus quadricinctus, H. tetrazonius, H. tumulorum, Lasioglossum calceatum, L. albipes, L. fulvicorne, Sphaecodes crassus, S. divisus, S. hyalinatus, S. fasciatus, Stelis ornatula, Osmia rufa, O. fulviventris, Megachile maritima, Coelioxys quadridentata, C. rufescens, Nomada ferruginata, N. flavoguttata.

3) 27 Western Palearctic species (19,4%): Colletes cunicularius, Hylaeus signatus, H. gibbus, H. communis, Andrena labialis, A. hattorfiana, A. schencki, A. nitida, A. nigroaenea, A. minutula, A. minutuloides, A. bicolor, Lasioglossum quadrinotatum, L. laticeps, L. villosulum, L. leucopum, L. morio, Sphaecodes puncticeps, Anthidium manicatum, A. punctatum, Anthidiellum strigatum, Chelostoma florisomne, Osmia anthocopoides, Nomada bifasciata, Anthophora acervorum, A. quadrimaculata, A. plagiata.

4) 34 European species (24,5%): Hylaeus cardioscapus, H. hyalinatus, Andrena varians, A. apicata, Panurgus calcaratus, Dufourea vulgaris, Sphaecodes ferruginatus, S. miniatus, Trachusa byssina, Chelostoma maxillosum, Ch. nigricorne, Osmia leaiana, O. uncinata, Megachile versicolor, M. willoughbiella, M. ligniseca, M. analis, M. circumcineta, Nomada sexfascaiata, N. rufipes, N. emarginata, N. roberjeotiana, N. striata, N. fabriciana, N. flava, N. leucophtalma, N. bifida, N. similis, N. mutabilis, N. panzeri, Eucera longicornis, Anthophora furcata, Macropis labiata, M. fulvipes

5) 6 European Caucasian species (4,3%): Andrena combinata, A. falsifica, A. nigriceps, A. jakobi, A. praecox, A. fucata

6) 5 North Central Europe species (3,6%): Andrena semilaevis, A. tarsata, Panurgus banksianus, Melitta haemorrhoidalis, Osmia leucomelaena

7) 4 European Siberian species (3%): Andrena subopaca, A. coitana, A. denticulata, Nomada obtusifrons

8) 1 West European species (0,7%): Halictus eurygnatus

9) 6 Montane species (4,3%): Andrena rufizona, Halictus confusus alpinus, Lasioglossum cupromicans, L. bavaricum, Anthidium montanum, Osmia villosa

10) 12 North Montane species (8,6%): Hylaeus annulatus, Andrena ruficrus, A. lapponica, Lasioglossum fratellum, Duphourea halictula, D. dentiventris, Osmia inermis, O. parietina, Megachile nigriventris, M. lapponica, M. alpicola, Nomada obscura

11) 1 South Central Europe species (0,7%): Andrena gravida

12) 5 Submediterranean species (3,6%): Hylaeus cornutus, Lasioglossum politum, Halictus simplex, Osmia adunca, Biastes truncatus

13) 1 Submediterranean Siberian species (0,7%): Andrena flavipes

14) 2 Subponto Mediterranean species (1,4%): Andrena limata, A. marginata

15) 1 Subpontic species (0,7%): Rhophitoides canus.

2. Vertical distribution of various zoogeographical elements

Those species which are southern or south-eastern zoogeographical elements in the Tatra Mts (Submediterranean, Subpontic, Subponto-Mediterranean, Submediterranean-Siberian) were found as single specimens in zone I N and in zones I S and II S. The only South Central European species, Andrena gravida⁽¹⁾, was recorded from one specimen collected in zone IV N. All the above-mentioned elements are represented by 10 species (6,8% of the whole material) and by 44 specimens (constituting only 2%).

Montane species (6 - 4,2%), collected to at number of 1 - 12 specimens, were recorded only from zones I - II (Andrena rufizona, Halictus confusus alpinus, Lasioglossum cupromicans), or from zones I - III (Anthidium montanum, Osmia villosa, Lasioglossum bavaricum). Altogether 40 individuals of the montane species were caught, accounting for 1,7% of the material collected.

¹The specimen determined as Andrena gravida is very interesting. It was a female, probably of the second generation, caught on Siwe Sady on 5 August 1968. The insect was not damaged, thus it could not have been carried to this place by a strong wind. However, this specimen differs from other representatives of the species known to the author from Central Europe (DYLEWSKA 1987), in having reddish hairs at the end of the abdomen. there is a very similiar female of this species, cought in Germany by STOECKHERT, there is stored in Zoological Museum of the Humboldt University in Berlin. Both these specimens resemble in size the typically coloured ones, but their body lenght is distinctly smaller. STOECKHERT found his specimen in a nesting colony of Andrena gravida, which seems to confirm its belonging to the species in question.

M. DYLEWSKA

Among the North Montane species Andrena lapponica and Lasioglossum fratellum may be considered as common. They occur in zones I - IV. The remaining species of this group were captured in numbers of 1 - 13 individuals in zones I - III (Hylaeus annulatus, Andrana ruficrus), in zones I - II (Dufourea halictula, D. dentiventris, Osmia inermis, O. parietina, Megachile nigriventris, M. lapponica, M. alpicola), or only in zone I (Nomada obscura). Altogether 390 specimens of north-montane species were collected, constituting about 17% of the whole material.

European Siberian species (4) were observed in zones I - IV (Andrena subopaca), I - III (Andrena coitana), I - II (Nomada obtusifrons), or only in zone I (A. denticulata). A. subopaca and A. coitana were considered by the author as common, the remaining two species were collected in numbers of 10 and 5 specimens respectively. Altogether 186 specimens of Euro-Siberian elements were studied, constituting 8,1% of the collected material.

Besides, the author noted 5 North Central European species, of which only *Panurgus* banksianus was common, occurring in zones I - IV. The remaining species were recorded in zones I - III (Andrena semilaevis), I - II (Melitta haemorrhoidalis), O. leucomelaena), or only in zone I (Andrena tarsata) to the number of 1 - 13 specimens. A total of 125 specimens belonging to this group was studied (5,3% of the collected material).

The number of Montane, North Montane, European Siberian, and North Central European species recorded was 27 (19,5%) while the total number of collected specimens from the above groups was 739, this constituting 32,1% of the studied specimens.

Widely distributed species (Holarctic, Palearctic, Western Palearctic, European, and European Caucasian) constituted the most numerous groups (102 - 73,7%). Among them were 5 common species occurring in zones I - IV (Andrena clarkella), I - III (Andrena haemorrhoa, Lasioglossum calceatum, L. albipens, and I - II (A. humilis). The remaining widely distributed species were found in numbers of 1 - 45 individuals in zones I - IV. Altogether 1508 specimens (about 66%) belonging to this group were collected.

VI. ECOLOGICAL ANALYSIS

1. The effect of climate on the distribution of *Apoidea* (excluding the family *Apidae*) in the Tatras and in the sub-Tatra zone

In her prevoius works (DYLEWSKA 1966, 1970) the author expressed the view that microclimatic conditions are decisive in the selection of nesting places and flight areas, and that the limits of microclimatic zones are at the same time those of distribution of early spring, late spring, and summer bees. Thus, in general, summer species do not live where there is no climatic summer and the limits of climatic spring and late spring are also the limits of occurrence of early and late spring species. The only exceptions to this rule, based on microclimatic data, may be localities with a very specific microclimate. Early spring species appear when the average daily temperature reaches at least 5°C and the temperature in the sun is at least 21°C. At a temperature of 26°C in the sun all species of this group may be observed. Late spring species appear only when the average daily temperature is

at least 10° C and that in the sun exceeds 26° C. Summer species appear at an average daily temprature exceeding 15° C and 30° C in the sun.

Table III shows the numbers of captured specimens and localities in the particular altitudinal zones on the northern and southern slopes of early spring, late spring, and summer species. Early spring species were found in zones I - IV, i.e. up to and including the dwarf mountain pine zone and, at the same time, up to the limit of climatic late spring. However, the distribution of those species in the particular zones in uneven - with the increase in altitude the number of species clearly diminishes (see Table III). The late spring species occur in the Tatras only in zones I to III, i.e. below the limit of late spring.

The localities of late spring species found in zone III were situated in very warm places, sheltered from the wind and well insolated in this zone only 19 specimens were collected of which 11 were montane species.

Summer species may be divided into two groups: the first includes 31 species which were found on the northern slopes only in zone I but on the southern ones also in zone II (lower montane forest zone). The second group of summer bees was also found in the higher zones and comprised (13) species, of which 5 belong to Montane, North Montane, European Siberian, and North Central European elements. The remaining species are widely distributed. The number of specimens representing summer species (Table III) totalling 346 (282 in zone I N, 36 in zone II N, 27 in zone III N, and 1 in zone IV N), may be considered as large in an area with no climatic summer. From the first group of summer species 105 specimens were collected exclusively in zone I N and 82 in zones I S and II S. Climatic summer occurs in zone IS and at the lower limit of zone IIS. The number of specimens representing the second group of summer species was very great, amounting to 241 on northern slopes and to 46 on southern slopes. To this number mainly common species contributed, i.e. Andrena coitana (64 specimens on N slopes and 4 on S slopes), Panurgus banksianus (71 and 21 respectively), Anthophora furcata (12 and 16), Chelostoma florisomne (15 on N slopes), and Dufourea vulgaris (41 and 4). The remaining species of this group were found in numbers from 1 - 4 specimens on both slopes of the Tatras.

2. Apoidea (excluding the family Apidae) of the limestone and granite Tatras

Table II shows the numbers of localities of *Apoidea* recorded from the limestone and granite Tatras. They total 50 and 27 respectively, while the totals for the particular zones II, III, and IV are 30, 15, and 5 in the limestone and 9, 12 and 6 in the granite Tatras. Still greater differences in the number of localities occur between the northern and southern slopes. Thus, on the northern slopes of the limestone Tatras, in zones II, III, and IV, were found 20, 13, and 3 localities, but on the southern ones 10, 1, and 2 respectively. On the northern slopes of the granite Tatras the numbers of localities were 2, 5, and 3, and on southern ones 7, 7, and 3.

The numbers of localities and specimens of the particular bee species recorded from the limestone and granite Tatras are given in Table III. Altogether 43 species were found in the granite and 66 in the limestone Tatras. The number of individuals captured in the latter (905) was much greater than that in the former (311). As the total number of localities

M. DYLEWSKA

was smaller (27) in the granite than in the limestone Tatras (51) it is not possible to make a direct comparison of the numbers of species and specimens caught in the two parts. The average number of specimens caught per one locality in the limestone Tatras was 14 and in the granite part 11,4.

No detailed information on the localities of 12 species reported from the Tatras by BELÁKOVÁ (1980) is given. All the remaining species, however, may be grouped according to the substratum or other parameters.

Out of 14 species recorded exclusively from the granite Tatras, 3 (21%) appeared in early spring, 4 (29%) in late spring, and 7 (50%) in summer. On the other hand, out of the species known only from the limestone Tatras, 7 (22,5%) were observed in early spring, 11 (35,5%) in late spring, and 13 (42%) in summer.

The remaining 35 Tatra species were collected in both granite and limestone parts of the range. Among species from this last group 18 (51,5%) appear in early spring, 11 (31,5%) in late spring, and 6 (17%) in summer. Species recorded only from the granite Tatras were found in numbers of 1 - 4 specimens in 1 -2 localities. In view of their rarity it is impossible to state that they are confined to a granite substratum. However, in the limestone Tatras the author collected individuals of the discussed species in numbers from 1 - 24 from 1 - 5 localities. Only about the species nesting in the crevices of limestone rocks (Trachusa serratulae and other of the family Megachilidae) can it be stated with certainly that in the Tatras they are associated with these rocks. Although detailed bionomical data on these species are lacking, it is not impossible that they nest also in other porous rocks. Moreover, some species of the genera Chelostoma and Megachile nest in dead wood in numerous shepherd's huts and hay sheds, the great majority of which are in the limestone Tatras. Most of the species occurring all over the Tatras are early spring ones. They chiefly nest in the ground and have very small thermal demands. The greater part of the common Tatra species occur throughout the range, and are early spring ones. Besides, the much larger numbers of localities, species, and specimens recorded from the limestone Tatras, mainly results from their considerably differentiated morphology and the possibility of occurrence of warm places. This chiefly concerns the northern slopes of the sub-Tatra zone and the lower montane forest zone, since the southern slopes are smooth, without forest cover and, in higher parts, very steep and exposed to strong winds which impede or prevent the flight of bees.

3. Food plants

The food plants and species of *Apoidea* (excluding the family *Apidae*) visiting them are listed in Table VIII. Some plants were identified to the species, other to the genus, while the genera *Leontodon* and *Hieracium* were treated together. To elaborate a detailed list of all the plant species and the bees visiting them would require special studies; the investigations hitherto carried out indicate that bees do not necessarily choose a particular plant species, their choice depending rather on the size, colour and shape of a flower, though in a given area they visit specific plants. The majority of *Apoidea* are polyphagous and visit numerous plant species or even whole families of plants.

Table VIII

Number of collected Apoidea No. Food plants Visiting Apoidea species specimens species (1)(2)(3)(4)(5)Crocus 1 Andrena bicolor (500), Lasioglossum fratellum (10) 2 6 scepusiensis Andrena lapponica (1100, 1400), A. apicata (200), A. clarkella (3900), A. ventralis (0), A. semilaevis (0, 200), A. subopaca (0), A. bicolor (1400), A. ruficrus (1200), A. jakobi (0), A. rosae (300), A. praecox (13300, 600), A. haemorrhoa (2000, 4000), A. combinata (d), A. minutula (200), A. minutuloides (0), A. falsifica (0), Colletes 2 31 363 Salix sp. cunicularis (9), Halictus confusus alpinus (9), H. rubicundus (299), H. tumulorum (300), Lasioglossum albipes (500), H. calceatum (700), L. rufitarse (200), L. fulvicorne (1000), L. fratellum (1400), Nomada panzeri (700), N. leucophtalma (9), N. ferruginata (9), N. obscura (o), N. flava (o), Andrena lapponica (600, 700), A. clarkella (300), A. bicolor (9, 4 3 20 Petasites sp. o), Nomada panzeri (o, o) 2 2 4 Padus avium Andrena bicolor (9), A. ruficrus (9) Andrena subopaca (o, o), A. falsifica (o), A. lapponica (1500, 5 Gagea lutea 1000), Lasioglossum calceatum (200), L. fratellum (2500), Noma-7 56 da leucophtalma (9) Andrena haemorrhoa (9, 200), A. falsifica (699, 300), A. subopaca (600), A. bicolor (700), A. apicata (0), A. clarkella (1000), A. lapponica (200, o), A. fucata (o), A. humilis (1100, 600), A. labiata Taraxacum 6 (9), Halictus rubicundus (699), H. confusus alpinus (9), H. tumulo-21 125 officinale rum (400), Lasioglossum fratellum (800), L. rufitarse (300), L. albipes (2200), L.calceatum (1300), L. fulvicorne (500), L.bavaricum (200), Nomada ferruginata (200), N. panzeri (0) 7 Lasioglossum fulvicorne (0), Osmia rufa (200) Primula elatior 2 3 Andrena haemorrhoa (9), A. combinata (3), A. lapponica (1600, Vaccinium 8 1200), Lasioglossum calceatum (9), L. albipes (9), L. fulvicorne (9), 8 36 myrtillus Osmia inermis (200), Nomada panzeri (9) 9 Lasioglossum fratellum (1400), Nomada panzeri (200, 400) V. vitis-idaea 2 20 10 Rubus idaeus Andrena fucata (1200) 1 12

Food plants visited by Apoidea species in the Tatra Mountains

Table VIII ctd.

(1)	(2)	(3)	(4)	(5)
11	Potentilla sp.	Andrena haemorrhoa (I), A. nigroaenea (2II), A. combinata (10TI), A. minutula (2QQ), A. falsifica (9QQ, 2TI), A. semilaevis (6QQ, I), A. subopaca (35QQ, 3TI), A. bicolor (2QQ), A. coitana (15QQ), A. lapponica (Q), Hylaeus confusus (Q), H. hyalinatus (Q), Lasioglos- sum albipes (14QQ, I), L. calceatum (8QQ), L. rufitarse (Q), L. fratellum (17QQ, 8TI), L. leucopum (4QQ), L. bavaricum (4QQ), Osmia villosa (Q), Chelostoma nigricorne (2TI), Nomada flavogut- tata (Q, 2TI), N. panzeri (Q)	22	155
12	Rosa canina	Andrena fucata (9), A. rufizona (0)	2	2
13	Reseda lutea	Hylaeus signatus (q), Andrena nigroaenea (300), A. ovatula (q)	3	5
14	Leontodon sp. and Hieracium sp.	Hylaeus confusus (5 $\varphi\varphi$, σ), H. annulatus (φ), H. cardioscapus (φ), H. hyalinatus (φ), Andrena gravida (φ), A. ovatula (φ), A. minutula ($2\varphi\varphi$), A. minutuloides (φ), A. falsifica ($3\varphi\varphi$, σ), A. subopaca ($15\varphi\varphi$, σ), A. coitana ($8\varphi\varphi$, $2\sigma\sigma$), A. bicolor ($5\varphi\varphi$, $4\sigma\sigma$), A. humilis ($22\varphi\varphi$, 14 $\sigma\sigma$), Panurgus banksianus ($23\varphi\varphi$, 21 $\sigma\sigma$), Halictus rubicundus (φ , 4 $\sigma\sigma$), H. tumulorum ($6\varphi\varphi$, σ), H. confusus alpinus ($2\sigma\sigma$), Lasioglos- sum zonulum ($3\varphi\varphi$), L. leucozonium ($5\varphi\varphi$, $2\sigma\sigma$), L. leucopum ($3\varphi\varphi$), L. rufitarse ($4\varphi\varphi$), L.fratellum ($19\varphi\varphi$, 49 $\sigma\sigma$), L.calceatum ($32\varphi\varphi$, 9 $\sigma\sigma$), L. albipes ($95\varphi\varphi$, $32\sigma\sigma$), L. villosulum ($10\varphi\varphi$, σ), L. fulvicorne (φ , $3\sigma\sigma$), Sphaecodes divisus (φ), Sph. miniatus (φ), Duforea dentri- ventris (φ , σ), D. vulgaris ($6\varphi\varphi$), Stelis ornatula (φ), Chelostoma florisomne (φ , $3\sigma\sigma$), Ch. maxillosum ($2\varphi\varphi$), Osmia athocopoides ($3\varphi\varphi$, $4\sigma\sigma$), O. villosa (φ), O. leaiana (φ), Megachile alpicola ($2\varphi\varphi$), Nomada striata (σ), N. bifasciata (σ), N. obtusifrons (φ), N. flavo- guttata ($2\varphi\varphi$)	43	448
15	Senetio sp.	Lasioglossum fratellum (500)	1	5
16	Cirsium sp.	Osmia villosa (q), Megachile willoughbiella (q), Anthophora fur- cata (d)	3	3
17	Centaurea sp.	Megachile ligniseca (q)	1	1
18	Cichorium inthybus	Lasioglossum albipes (ơ), L. calceatum (ç, ơ)	2	3
19	Campanula sp.	Andrena bicolor (1199), A. fucata (399), Lasioglossum fratellum (3100), Duphourea dentiventris (200), Melitta haemorrhoidalis (299), Chelostoma florisomne (399, 700), Ch. nigricorne (1599, 1000)	7	84
20	Lotus corniculatus	Trachusa byssina (699, 2200), Anthidium montanum (599), Osmia leucomelaenea (299), O. villosa (9), Megachile willoughbiella (9, 200), Eucera longicornis (9), Megachile alpicola (9)	7	41
21	Vicia silvatica	Megachile willoughbiella (q), M. ligniseca (q)	2	2
22	Lathyrus pratensis	Trachusa byssina (399, 400), Osmia leaiana (9), O. villosa (299), Megachile nigriventris (9, 0)	4	12

lable vi	II cta.
----------	---------

(1)	(2)	(3)	(4)	(5)
23	Trifolium sp.	Andrena ovatula (299), Anthidium punctatum (299), Anthophora furcata (9)	3	5
24	Medicago sp.	Andrena schencki (q), Megachile alpicola (q), M. willoughbiella (q)	3	3
25	Anthylis sp.	Megachille willoughbiella (9)	1	1
26	Knautia arvensis	Andrena hattorfiana (1399), Celioxys rufescens (ơ), Nomada sexfasciata (299)	3	16
27	<i>Scabiosa</i> sp.	Hylaeus hyalinatus (299), Halictus rubicundus (9, 200), H. sim- plex (799, 0), Lasioglossum albipes (9), L. villosulum (9), L. fra- tellum (0)	6	16
28	Sinapis arvensis	Andrena fucata (ç)	1	1
29	Thymus sp.	Halictus tumulorum (I), H. confusus alpinus (2II), Sphaecodes divisus (9)	3	4
30	Prunella sp.	Lasioglossum fratellum (ơ)	1	1
31	. Ballota nigra	Anthophora furcata (200, 200)	1	4
32	Lamium purpureum	Anthidium punctatum (300)	1	3
33	Stachys sp.	Anthidium manicatum (4໑૦, ♂), Celioxys rufescens (๑), Anthop- hora quadrimaculata (໑໑໙, ♂), A. furcata (໑, 3ơơ)	4	20
34	Salvia pratensis	Anthidium manicatum (ෆ), Megachile nigriventris (ෆ), Anthopho- ra quadrimaculata (2රෆ), A. furcata (4රෆ)	4	8
35	Veronica sp.	Hylaeus communis (399), H. cardioscapus (9), Andrena subopaca (699), A. coitana (399, 0), A. bicolor (0), A. lapponica (9), Halictus tumulorum (399), H. confusus alpinus (9), Lasioglossum calceatum (699), L. albipes (899), L. fulvicorne (599), L. villosulum (299), L. rufitarse (299), L. fratellum (9)	14	44
36	Anemone rannunculoides	Andrena lapponica (200)	1	2
37	Rannunculus sp.	Andrena subopaca (q), Lasioglossum fratellum (3qq)	2	4
38	Urtica sp.	Lasioglossum albipes (9,900)	1	10
39	Chamaenerion angustifolium	Trachusa byssina (ඉ, 2රට), Lasioglossum albipes (2२२, 3රට), L. fratellum (१), Nomada obtusifrons (१)	4	10
40	Astrantia major	Andrena bicolor (9, 300)	1	4
41	Hypericum sp.	Andrena lapponica (ç)	1	1
42	Calluna vulgaris	Lasioglossum leucozonium (ơ), L. calceatum (2ơơ), L. fulvicor- ne (ơ), L. fratellum (3ơơ)	4	7
		Total of specimens		1568

M. DYLEWSKA

As can be seen from Table VIII, the author caught 448 specimens of the *Apoidea* (41 species) on plants of the genera *Leontodon* and *Hieracium*. This constitutes 28% of all beees collected on flowers. 336 specimens (28%), representing 34 early spring species, were captured on willow catkins. 155 specimens (10%) belonging to 21 late spring species were found on *Potentilla*. The flowers of *Taraxacum officinale* were visited by 20 species (125 individuals - 8%). The remaining plant species were visited far less frequently.

Early spring species were captured mainly on Salix but also on Petasites, Padus avium, Gagea lutea, Taraxacum officinale, Primula elatior, and Vaccinium. Late spring and summer species mainly visited the flowers of Potentilla, Leontodon and Hieracium. The flowers of Potentilla were chiefly visited by the small species of the genus Andrena (above all from the group of A. minutula and A. coitana, but those of Leontodon and Hieracium by species of the genera Halictus and Lasioglossum.

In the Tatras among monophagous bee species the author found Andrena hattorfiana which is confined to the flowers of Knautia arvensis. Of the oligophagous species visiting flowers of the genus Campanula were observed: Melitta haemorrhoidalis, Andrena bicolor (II. generation), Chelostoma florisomne, and Ch. nigricorne. Trachusa byssina was captured exclusively on the flowers of Lotus corniculatus and Lathyrus silvestris. At the beginning of its appearance Andrena lapponica (chiefly males) visited species of the genus Salix and then Vaccinium, while A. furcata mainly visited Rubus. Many bees of the family Megachilidae visited plant species belonging to the families Papilionaceae and Compositae.

In general, common species visited the largest number of plant species, with the exception of Andrena humilis and A. lapponica which are oligophageous. The findings of Lasioglossum albipes on Urtica was astonishing and could only have been dictated by hunger. To sum up, it seems that the flower supply in the Tatras is sufficient for the poor fauna of Apoidea. The absence of Apoidea on the large areas overgrown by apidophilous vegetation is explained by the thermal conditions, which are unsuitable for bees.

4. Xerothermic species

The bee species belonging to southern or south-eastern zoogeographical elements (Submediterranean, Subponto Mediterranean, Subpontic, Submediterranean Siberian) and Andrena gravida, known from South Europe and from warm localities in Central Europe, are xerothermic. Also, as species that have greater temperature demands may be regarded numerous widely distributed summer species as well as some late spring ones. Xerothermic species (apart from Andrena gravida) were recorded only from the sub-Tatra zone (from both N and S slopes) and from zone II S. These are chiefly connected with xerothermic plants, above all with Papilionaceae (MICHALIK 1979). Altogether, in the Tatras and in the sub-Tatra zone there live 70 xerothermic species, constituting about 50% of the species reported from that area.

All remaining species, apart from the widely distributed ones, nest and fly only in the warmest places in the investigated area. At the upper limits of their vertical range even the common species behave similarly as xerothermic ones.

VIII. APOIDEA (excluding the family Apidae) OF THE TATRA MTS AS COMPARED WITH THAT FAUNA OF OTHER PARTS OF THE POLISH WEST CARPATHIANS

In Table IX the author has compiled the data on the occurrence of the investigated families of *Apoidea* in the Tatras and in the Polish part of the West Carpathians, except for the Carpathian foothills (Pogórze). Data from Mt Babia Góra and from the Pieniny Mts are based on monographs (DYLEWSKA 1962, 1966, DYLEWSKA, NOSKIEWICZ 1963) while those from the other parts of the West Carpathians single records are taken from papers by WIERZEISKI (1868, 1874), ŚNIEŻEK (1910), NOSKIEWICZ (1949), DYLEWSKA, ZABŁOCKI (1972), SZADZIEWSKI et al. (1973), and DYLEWSKA (1987).

1. Comparison of the Apoidea fauna of the Tatras, of Mt Babia Góra and of the Pieniny Mts

As can be seen from Table IX, in the Tatras during 16 vegetative seasons 2294 specimens were collected, on but Babia Góra during three-year study 2124, and in the Pieniny from 1954-1961 2542. In one vegetative season the investigations were carried out over about six weeks in which period the average number of specimens collected was 143 in the Tatras, 798 on Mt Babia Góra, and 318 in the Pieniny Mts. This particularly small number of specimens collected during one season in the Tatras may be explained by the prevailing very unfavorable climatic conditions for the bees.

All the common species recorded from the Tatras were also found on Mt Babia Góra. Most of these species, namely: Andrena haemorrhoa, A. humilis, Lasioglossum calceatum, L. albipes, and L. fratellum were also common on Mt Babia Góra. For some of the montioned species even the number of specimens caught are similar, though three common species (A. praecox, A. lapponica, and A. humilis) were recorded on the basis of twice as many specimens as in the Tatras and in the case of A. haemorrhoa on that of five times as many (Table IX). Conversely, the number of L. fratellum specimens captured on Mt Babia Góra was five times smaller than that in the Tatras. Andrena coitana and Panurgus banksianus were common in the Tatras but not on Mt Babia Góra. Only four species common in the tatras and on Mt Babia Góra were also common in the Pieniny Mts where they were captured in numbers of 77 - 168 specimens each. They were: Andrena haemorrhoa, A. bicolor, Lasioglossum calceatum, and L. albipes. A. lapponica, common in the Tatras and on Mt Babia Góra does not inhabit the Pieniny Mts because its food plants of the genus Vaccinium are lacking there. Andrena subopaca, A. humilis, and A. coitana, common in the Tatras and on Mt Babia Góra, were caught in the Pieniny Mts in numbers of 8, 19, and 2 specimens respectively.

On Babia Góra 6 North Montane species were found, all of which are known also in the Tatras. Of these six species only one, Osmia parietina, was caught in the Pieniny Mts. Of these species Andrena lapponica and Lasioglossum fratellum are common both on Mt Babia Góra and in the Tatras. The remaining Montane species were recorded from the Tatras and Mt Babia Góra on the basis of 1-13 specimens. One Montane species, Osmia villosa, is knon not only from the Tatras and Mt Babia Góra but also from the Pieniny Mts and from other part of the West Beskid Mts. In the Tatras 13 North Montane and 5 Montane

		Particular high zones										
No	Species			Fatras	8		Babia Góra Mt					
		I	II	ш	IV	v	I	II	ш	IV	v	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	
	Colletidae										3.3	
1	Colletes cunicularius		1				0.000					
2	C. daviesanus	3		þ			2					
3	Hylaeus signatus	1										
4	H. gibbus	1										
5	H. confusus	3	9				1	4				
6	H. brevicornis			aldı								
7	H. sinuatus		d b				18		13.5			
8	H. annulatus	1	2	1								
9	H. cardioscapus	5										
10	H. angustatus											
11	H. communis	8					1	2				
12	H. nigritus		1									
13	H. difformis		44				9					
14	H. cornutus		1									
15	H. hyalinatus	6	3				1	6				
16	H. annularis											
1.05	Andrenidae											
17	Andrena labialis	1										
18	A. agilissima											
19	A. tibialis		00	10-	2 1:010		1	103	10.1	1	1.00	
20	A. bimaculata											
21	A. pilipes											
22	A. carbonaria					e di s	1.0		k ad			
23	A. haemorrhoa	39	22	1	1000		235	73	2	7		

The list of Apoidea species (excl. Apidae) and numbers of their specimens collected on the Babia Mt and in the Pieniny Mts The other Polish West Carpathian

Table IX

in particular high zones in the Tatra Mts compared with those collected localities (or regions) where the species have been notet are added.

	Tota	al	Proved with the						
Tatras	Babia Góra Mt	Pieninv Mts	Localities in other Carpathian regions	Zoogeographic element					
(13) (14)) (15) (16)	(17)					
1	-	-		Western Palearctic					
3	2	1		Palearctic					
1	-	-		Western Palearctic					
1	-	-		Western Palearctic					
12	5	30	Poprad valley	Palearctic					
-	-	6		Western Palearctic					
-	18	2	Poprad valley	Western Palearctic					
4	-	-	Poprad valley	North Mountain					
5	-	-		European					
-	-	-	Poprad valley	Western Palearctic					
8	3	13	Poprad valley	Western Palearctic					
1	-	11	Mszana Dolna	Palearctic					
-	9	10	Mszana Dolna, Poręba Wielka	Western Palearctic					
1	-	-	Persona deservativativas	Submediterranean					
9	7	54		European					
-	-	-	Poprad valley	Western Palearctic					
				Shallow A. Th					
1	-	1	Dunajec valley	Western Palearctic					
-	-	26	Poprad a. Dunajec valleys, Beskid Niski	West Submediterranean					
-	2	7		European Siberian					
-	-	-	Dunajec valley	Palearctic					
-	-	-	Chabówka, Mszana Dolna, Poprad a. Dunajec valley	Palearctic					
-	-	-	Poprad a. Dunajec valleys	European					
62	317	147		Palearctic					

M. DYLEWSKA

(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
24	Andrena hattorfiana		10	4				4				
25	A. schencki		1				20.7					
26	A. proxima		Terra	C) ver	Jo el		nal					
27	A. suerinensis											
28	A. curvungula											
29	A. rufizona		1	1				(35)		2511		225
30	A. pandellei											
31	A. paucisquama											
32	A. thoracica										5	8
33	A. limata			1								1
34	A. nitida			1				4			2	
35	A. cineraria		1				toy	si be	0670	08	3.	5.0
36	A. nigroaenea		6									
37	A. flavipes		1	1 ·			vel	Astro-	100	5	81	
38	A. gravida					1	Noil	19 (j.)	10%			
39	A. polita											
40	A. fulvago						iend.	12 6.9	4			
41	A. pontica						2.25	of the	1.01	25	8	8
42	A. chrysosceles							1				1
43	A. floricola			a da si	N 99	no st	1.0	Care		0.1	0	-
44	A. combinata		12	1								
45	A. fulvida			3						5.2.1	÷.	0
46	A. ovatula		17	2			vali	4	2	-		
47	A. wilkella		10					5	2			
48	A. gelriae						milie	1	1.15			
49	A. similis	191		1971		in oel	nuti	8.04	a and	11 A.		
50	A. intermedia											
51	A. dorsata							4	1	1		4
52	A. congruens	aller nei ont fü		of L	n la di	artes	1.1	1	0			
53	A. minutula		1	3	2	1.000		3	2	1		
54	A. minutuloides		2	22					2			ca i

(13)	(14)	(15)	(16)	0	(17)
14	4	16	Mszana Dolna, Nowy Targ	10	Western Palearctic
1	-	-	Poprad valley		Western Palearctic
-	-	39	44 25 1 15 44		Western Palearctic
-	-	-	Poprad valley		Western Submediterranean
-	-	1	Dansier willey		Subponto Mediterranean
2	-	-			Mountain
-	-	1	Poprad valley		Subponto Mediterranean
-	-	1	Dunajec valley		Subpontic
-	-	8	Nowy Targ		Palearctic
1	-	2	Dunajec a. Poprad valleys		Subponto Mediterranean
1	6	21	43 23 3 1 68 40		Western Palearctic
1	-	-	Nowy Targ		Palearctic
6	-	6	Mszana Dolna, Poręba Wielka		Western Palearctic
2	-	-	Charlower, they have be		Submediterranean Siberian
1	-	_			South Central European
-		-)	Poprad valley		Subponto Mediterranean
-	4	9	40 35 31 8 11 78		European Caucasian
-	-	1	Dunajec valley		Subpontic
-	1	-	2 34 42 3		European Caucasian
-	-	4			European Caucasian
13	-	9	Poręba Wielka		European Caucasian
-	-	-	Dunajec a. Poprad valleys		European
19	6	-	Mszana Dolna		Palearctic
10	7	6	28 63 65		Holarctic
-	-	1	Contract Strength		European Caucasian
-	-	1	Dunajec a. Poprad valleys		Western Palearctic
-	-	-	Poprad valley		European
-	6	6			Western Palearctic
-	-	5	Dunajec valley		Subponto Mediterranean
6	6	21			Western Palearctic
2	2	30	And States and a fait		Western Palearctic

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
55	Andrena falsifica	12	8	1			5	14	1		
56	A. pusilla					103	917 (S)	no?			
57	A. subopaca	14	44	28	1		15	44	7	-	
58	A. semilaevis	4	3	6		i gai	4	4			
59	A. niveata										
60	A. barbilabris										3.5
61	A. coitana	36	13	22	?	- god	6	4	1.1		
62	A. lathyri					1020	2	Jac G			
63	A. nigriceps	1						in de	8		
64	A. denticulata	5		(end)	19. 20	der H	6.00)	iqu0.	1.5		11
65	A. bicolor	16	45	24	3		68	40	8	a.	
66	A. ruficrus	1	9	3			3	Active	1		
67	A. jakobi	1		197-25	1992	. pri k	14	data	19		
68	A. rosae	3	1						1		
69	A. varians		1						· · · .		
70	A. praecox	136	5			(ges)	155	23	4		
71	A. lapponica	3	40	35	31	?	11	78	36	89	3
72	A. fucata	6	18	1		(p.in	13	36			
73	A. apicata	2	2		1		42	3	15	9	
74	A. nycthemera									- 144	
75	A. clarkella	7	31	8	6	spiles	5	2			81
76	A. fulva					904	s þei	ei <i>s</i> a		in the second se	
77	A. vaga					ster fr	2.63	a			41
78	A. humilis	55	16				63	45	1	5	(1)
79	A. taraxaci										
80	A. ventralis	1			erine.	reșt în	a (22)	abC			
81	A. tarsata	11				100	04 (M	n de l'à			
82	A. labiata	1					-				
83	A. marginata		1			1.3.75	19.95		•		
84	A. potentillae										19
85	Panurgus baksianus	72	15	3	2		10	8	1	3	

(13)	(14)	(15)	(16)	(17)
21	20	31	seeine Wiester	European Caucasian
-	-	-	Dunajec a. Poprad valleys	Submediterranean
86	66	8		European Siberian
13	8	1	Sucara Shina	North Central European
-	-	-	Dunajec valley	Subponto mediterranean
-	-	11		European Siberian
71	10	2	Krynica	European Siberian
-	2	-	Raba Wyżnia, Dunajec valley	European
1	-	-	Nowy Targ, Poprad valley	European Caucasian
5	-	3	Mszana Dolna	European Siberian
88	116	75		Western Palearctic
13	3	-		North Montane
1	14	6		European Caucasian
4	-	-	Chabówka, Nowy Targ	Palearctic
1	-	-		European
141	182	119		European Caucasian
109	217	-		North Montane
25	49	10		European Caucasian
5	69	15		European
-	-	7		South Central European
52	7	13		Holarctic
-	-	-	Andrychów	European
-	-	5		European Siberian
71	109	19		Palearctic
-	-	27	Dunajec a. Poprad valleys	Subponto Mediterranean
1	-	66	Shape factor	Palearctic
11	-	-	Krynica	North Central European
1	-	2		Palearctic
1 .	-	6		Subpontic
-	-	1		Submediterranean
92	22	-	Poręba Wielka	North Central European

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
86	Panurgus calcaratus		1						12	0.5	22
56	Halictidae				er be	q A	8.99	een C			
87	Halictus quadricinctus	1	23				4	- 64	8	66	88
88	H. rubicundus	10	3				1			8	13
89	H. maculatus					100	1.205	au G			
90	H. tetrazonius	1									
91	H. simplex	10	13				1	n/03	1	$\langle O \rangle$	73
92	H. eurygnatus		1	ev 34	15,2567	i yair	1	1928		÷.	
93	H. tumulorum	19	4))	hay	10	17	1	1		
94	H. confusus alpinus	7	1			· set	0.50	cald.	1	·	
95	Lasioglossum xanthopum	18	-85				.83	1	80	311	-83
96	L. quadrinotatum		1							£	81
97	L. lativentre						3.4.		ò	11	
98	L. sexnotatum	3		gi	a.g	est.	and b	10.E.)			1
99	L. zonulum	6									
100	L. calceatum	57	54	5			82	27	5	\$31	144
101	L. albipes	58	174	31	?	- 35	99	856	1	285	- 40 (
102	L. leucozonium	12	4				1		01	-95	35
103	L. laeve	1	7							105	1
104	L. pauxillum									-	
105	L. laticeps	1	1	1.2					83	C.	22
106	L. fulvicorne	17	25	2			34	3	4		
107	L. fratellum	14	85	87	48	?	30	21	3		1
108	L. rufitarse	8	4	1			24			403	17
109	L. morio		1	et est i		20/3	0.000	0.00	12		
110	L. parvulum						4	1	65		1
111	L. nitidum aeneidorsum	13					80.3	Nr.N			11
	L. nitidium nitidium										1
112	L. cupromicans		2						3		
113	L. bavaricum		7	5							
114	L. villosulum	12	10	4		1000	32	33	1	85	50

(13)	(14)	(15)	(16)	(17)
1	-	47	Poręba Wielka	European
				Second Market A. 1981.
1	4			Palearctic
13	1	-	Mszana Dolna	Holarctic
-	-	-	Poręba Wielka	Western Palearctic
1	-	-	to a to	Palearctic
10	-	170		Submediterranean
1	-	-		West European
23	19	37		Palearctic
8	-	-		Mountain
-	1	1		Western Palearctic
1	-	1		Western Palearctic
-	-	7		Western Palearctic
-	-	9	Mszana Dolna	European Siberian
6	-	-		Holarctic
116	114	168		Palearctic
263	186	130		Palearctic
16	1	19		Holarctic
-	-	2		Western Palearctic
-	-	35		Western Palearctic
2	-	34		Western Palearctic
44	41	93		Palearctic
235	54	-		Holarctic (North Montane)
13	24	1		Holarctic
1	-	-		Western Falearctic
-	5		Mszana Dolna	Western Palearctic
-	-	24		European
-	1	-		European
2	-	-		Mountains
12	-	-		Mountains
26	66	17		Western Palearctic

M. Dylewska

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
115	Lasioglossum leucopum	11	3				12	24			
116	L. lucidulum										
117	L. intermedium										
118	L. politum	1				10.90	1.00	anis.			
119	Sphecodes monilicornis					xi o					
120	S. gibbus										
121	S. pellucidus								0.0		-04
122	S. divisus	3									
123	S. puncticeps	4	1				2				
124	S. ferruginatus	2									
125	S. hyalinatus	1					3	3			
126	S. crassus	1							- 33		
127	S. miniatus	6	2						2		
128	S. fasciatus	6									
129	Dufourea halictula		1								
130	D. dentiventris	3	2				7	7.5	825	118	
131	D. vulgaris	39		6			3	2	083	390	525
132	Rhophitoides canus	1							22		
133	Rh. quinquespinosus						1		1		
	Melittidae								24		
134	Melitta leporina										
135	M. haemorrhoidalis	3	1				2			13	
136	Macropis fulvipes	$\{ (a_i) \}$	1							-state	28
137	M. labiata	1	1								
	Megachilidae										
138	Trachusa byssina	25	24				12 200	1. CAR			
139	Anthidium manicatum	6	1								-
140	A. montanum	4		4							
141	A. punctatum		5								
142	A. strigatum	3	1								
143	Stelis phaeoptera						2				

(13)	(14)	(15)	(16)	(17)
14	36	91		Western Palearctic
	-	1		European Siberian
-		6		Western Palearctic
1	-	-		Submediterranean
-	-	3	Manania	Western Palearctic
-	-	-	Nowy Targ	Western Palearctic
-	-	3	101 II	Western Palearctic
3	-	4		Palearctic
5	2	. 3		Western Palearctic
2	-	9	1 16	European
1	6	10		Palearctic
1	-	-		Palearctic
8	-	2		European
6	-	1		Palearctic
1	-	-		North Montane
5	7	-	Poprad valley	North Montane
45	5	64	Poręba Wielka, Nowy Targ	European
1	-	4		Subpontic
-	1	7	Poprad valley, Poręba Wielka	Western Palearctic
				163 Proc. D. Barangerering
-	-	1	Poprad valley	European
4	2	29	Poprad valley, Chabówka	North Central European
1	-	3	Poręba Wielka	European
2	-	-		European
				102 Alexandream (122)
49	-	20	Mszana Dolna, Nowy Targ	European
7	-	33		Western Palearctic
8	-	1		Mountain
5	-	38		Western Palearctic
4	-	14		Western Palearctic
-	2	1		Western Palearctic

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
144	Stelis ornatula	1	1						12	36	3.1
145	S. minuta						2				
146	S. signata										
147	Dioxys tridentata										1
148	Heriades truncorum								E.		
149	Chelostoma maxillosum		14	2			3	a-cM			
150	Ch. florisomne	9	4	2			12	10	÷.e.		
151	Ch. nigricorne	4	4				44	1	- 8.		1
152	Ch. distinctum								τ.	.5	3
153	Osmia rufa	11					24	1	0		
154	O. cerinthidis						3	3.5	01	8	. r
155	O. inermis		2								
156	O. uncinata		1								
157	O. parietina	1	2				1			-	8
158	O. atroaerulea								-		
159	O. fulviventris	1	2.5			- yes	6	1909			
160	O. adunca	1		der :	and d	10.13	25	-109	-8-3		15
161	O. anthocopoides	10							1.5		
162	O. leucomelanea		2	1.11	10993	. * 61	1	603			
163	O. leaiana	5	1				1				
164	O. coerulescens					1993	3	1			
165	O. andrenoides			1.1914	si ng f		e 7 b	12107	00		. 8
166	O. aurilenta					- 10.75	107 a	2029	Ę.		
167	O. bicolor						1	-		·	
168	O. villosa	3	4	1			9				
169	O. spinulosa	2.5	2.6	0.1°	0005		(1 au	ant/	00		25.
170	O. ononidis	6							83		
171	Megachile centuncularis	4									8
172	M. versicolor	1	5						88		
173	M. lapponica		1				2		M		· 3
174	M. alpicola	5	1								

(13)	(14)	(15)	(16)	(0)	(17)
2	-	3			Palearctic
-	2	_			European
-	_	2			European
-	-	7			South Central European
-	-	7	Wadowice		Western Palearctic
16	3	77			European
15	22	6			Western Palearctic
8	45	13	Poręba Wielka		European
-	-	3			South Central European
11	25	13			Palearctic
-	-	48	-		Subpontic
2		_			North Montane
1	-	-			European
3	1	1			North Montane
-	-	1			Western Palearctic
1	6	2	Poręba Wielka		Palearctic
1	25	23	Poręba Wielka, Poprad valley		Submediterranean
10	-	13			Western Palearctic
2	1	1	Poręba Wielka		North Central European
6	1	3			European
_	4	1			Western Palearctic
-	-	30			Submiterranean
-	-	1			Western Palearctic
-	1	-			Western Palearctic
8	9	4			Mountain
-	-	7			South Central European
-	-	1	16 3 16 7 12		Subpontic
-	-	3			Western Palearctic
1	-	7			European
1	2	-			North Montane
6	-	-	* S		North Montane

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
175	Megachile analis	1	1								2000 A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.
176	M. ligniseca	1	1								
177	M. willoughbiella	8	4				4		c.		
178	M. maritima	1									
179	M. lagopoda						phirol	1042	1	-	
180	M. circumcineta	4	14						57	£	81
181	M. nigriventris	9	2	3			ЪŻ.	10	6		12
182	M. ericetorum					col lesi	1	-	63	24	
183	Coelioxys quadridentata	6									
184	C. rufescens	3	1				1		83		
185	C. lanceolata								1.50		
186	C. alata									•	1
187	C. elongata										
1.27	Anthophoridae	1									
188	Nomada goodeniana										
189	N. bifasciata ssp. fucata				1	015	1	an St	1	6	
190	N. lineola		1.11	la be	10 E	Sister	13	ac/T		21	
191	N. marshamella	10							61		193
192	N. sexfasciata	2				1.115	2	1.275			
193	N. rufipes	1									
194	N. emarginata	5									
195	N. roberjeotiana	4	1						001		
196	N. obtusifrons	9	1	3							-
197	N. striata	7					2	2			
198	N. guttatula							•		Q	8
199	N. zonata										
200	N. panzeri	2	16	3	16	?		12	2	3	
201	N. flava		1				3	2			
202	N. leucophtalma		6		1		9	8			
203	N. ferruginata	3	2				1				
204	N. bifida	1					7	4	1		

Table IX ctd.

(13)	(14)	(15)) (16) (17)			
2	-	-		European		
2	-	49	Poprad valley	European		
12	4	11		European		
1	-	-	Nowy Targ	Palearctic		
-	-	-	Poprad valley, Poręba Wielka	Western Palearctic		
4	-	14	Podma vedkaj	European		
11	-	3		North Montane		
-	1	4		Western Palearctic		
6	-	7	2 2 2	Palearctic		
4	1	3		Palearctic		
-	-	1		North Montane		
-	-	1		Submediterranean		
-	-	1		Western Palearctic		
		1.5		and the standard and the		
-	-	4		European		
1	-	-		Western Palearctic		
-	-	2		European		
-	-	10		European		
2	2	1	Poprad valley	European		
1	-	-		European		
5	-	5		European		
5	-	-		European		
13	-	-		European Siberian		
7	4	-		European		
-	-	5		European		
-	-	3		South Central European		
37	17	2		European		
1	5	4	interesting the second second second	European		
7	17	2		European		
5	1	16	House the strain of the strain states and strain a	Palearctic		
1	12	12		European		

255

(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
205	Nomada alboguttata											
206	N. flavoguttata		9	3	1		100	2	15	2		
207	N. castellana											
208	N. conjungens							$dT = \frac{1}{2}$				
209	N. fuscicornis			ad.	347° 10	790	1996	ar ist			_	
210	N. similis		2	2						1.		
211	N. armata											
212	N. mutabilis		1	1								
213	N. fabriciana			1	2			2	2	7		
214	N. obscura		1									
215	N. argentata	· · · ·										
216	N. fulvicornis											
217	Biastes truncatus		26									
218	Eucera longicornis		2					3				
219	Anthophora acervorum		3	3				6				
220	A. aestivalis											
221	A. quadrimaculata		15									
222	A. plagiata			1	1			1		61		
223	A. furcata		15	11	2		98.4	2			-C [5
224	Thyreus orbatus							1				
225	Ceratina cyanea							1				2
	total species		106	79	27	11		72	43	9	7	1
35	total specimens		1065	820	295	111		1251	659	97	114	3

species were found. From the Pieniny Mts the author reported 3 North Montane species, two of them (*Megachile nigriventris* and *Osmia parietina*) being knwon from the Tatras, and 2 Montane species (*Osmia villosa* and *Anthidium montanum*) both known also from the Tatras. Some Montane species recorded from the Tatras and associated with limestone rocks, namely: *Anthidium montanum*, *Lasioglossum cupromicans*, *L. bavaricum*, and *Halictus confusus alpinus*, were not found on Mt Babia Góra. In the limestone Pieniny Mts, however, only *A. montanum* was found.

(13)	(14)	(15)	(16)	(17)
-	-	4	Gont and from the Tatras as seen as the se	South Central European
13	19	12	as have similar indices (in another seven	Palearctic
-	-	1	v he prous of widely diverses some	Western Palearctic
-	-	1	stane and North Montane Isaas of Sec.	South Central European
-	-	3	stres (35) that to the corresponding received	European
4		5	Poprad valley	European
-	-	2	Poprad valley	North Central European
2	-	-	an internet of the strength of the strength of	European
1	4	1	constants of which there are been a constants.	European
1	-	-	d summer famos beikes a be hitten and	North Montane
-	-	4		Central South European
-	-	2		Central South European
26	-	-		Submediterranean
2	• 3	45		European
6	6	9		Western Palearctic
-	-	1		South Central European
15	-	-		Western Palearctic
2	1	1		Western Palearctic
28	2	7	Chabówka, Nowy Targ	European
-	1	1		Submediterranean
-	1	-	tomo valleys i species of i position (in	Submediterranean
139	85	154	67	
291	2124	2542	Ha Géne, Theirs assisters are veven for all	with the Fiendry Mits and AL Bat

On Mt Babia Góra the author found only 3 Submediterranean species among which Osmia adunca is known from the Tatras, Pieniny Mts, and West Beskid Mts, and Thyreus orbatus from the Pieniny Mts. Out of 19 Submediterranean, Subpontic, and Subponto Mediterranean species which the author found in the Pieniny Mts, only 5 are also known from the Tatras. In the Tatras there live altogether 9 species belonging to the above mentioned zoogeographical elements.

The proportions of species caught in the particular altitudinal zones of the Tatras and of Mt Babia Góra are similar (Fig.3). It is particularly noticeable that in the Tatras as well

257

M. DYLEWSKA

as on Mt Babia Góra the number of species in zone I S is distinctly smaller than in zones II S and I N. This is connected with the sensitivity of bees to the thermal conditions. In zone V in the Tatras no species was found, but on Mt Babia Góra Andrena lapponica was caught in that zone (alpine meadows).

In Table X are assembled the numbers of species collected in the Tatras, Pieniny Mts, and on Mt Babia Góra as well as the numbers of species that the Tatras have in common with the Pieniny Mts and Mt Babia Góra. These numbers are given for all the recorded species and for the following distinguished groups of zoogeographical elements: 1) Montane and North Montane, 2) Submediterranean, Subpontic, Subponto Mediterranean, West Submediterranean, and Submediterranean Siberian, 3) widely distributed species and phenological groups, i.e. (early spring, late spring, and summer species). These data made possible the determination of similarities between the investigated faunas. Those were calculated using SØRENSEN's formula:

$$QS = \frac{2c}{a+b} \times 100$$

where c is the number of species the two areas have in common, and a and b are the numbers of species in the particular areas. Table X shows that the index of similarity

between the Tatra and Pieniny fauna as well as that betwen the Tatra and Mt Babia Góra fauna is 60. However, the similarity indices calculated for the groups of faunistic elements distinguished above are different. Thus, the groups of North Montane and Montane species from Mt Babia Góra and from the Tatras as well as the groups of widely distributed species from these areas have similar indices (56 and 63 respectively), while the groups of species connected with a warm climate have very low ones (19). In the case of the Pieniny and Tatra Mts only the groups of widely distributed species have a high index of similarity (65). The Montane and North Montane fauna of the Pieniny Mts is less similar to that fauna in the Tatras (35) than to the corresponding group of species from Mt Babia Góra. On the other hand, the index of similarity between the Pieniny and Tatra faunas of warm climate (46) is more than twice that calculated with reference to the corresponding fauna of Mt Babia Góra. Thus, the Apoidea fauna of the Tatras is more similar to that of Mt Babia Góra with regard to the elements of cool climate and to that of the Pieniny Mts with regard to the elements of warm climate. This is confirmed by an analysis of the indices of similarity concerning the particular phenological groups. The similarity of the early spring, late spring, and summer faunas between the Tatras and Pieniny Mts is almost equal (58 -63), while in the case of the Tatras and Mt Babia Góra it is distinctly reduced (from 72 to 42).

2. Apoidea of the Tatras and the remaining parts of the West Carpathians

Apart from the Tatras, Pieniny Mts and Mt Babia Góra, most of data on the occurrence of *Apoidea* were collected in the Beskid Sądecki Mts, namely in the Dunajec and Poprad river valleys and in Krynica. Besides, there were a few records from the Gorce (Chabówka, Poręba Wielka), Beskid Wyspowy (Mszana Dolna), Beskid Mały (Andrychów), and Beskid Niski (Gorlice) Mountains.

When comparing the *Apoidea* fauna of the Tatras with that of the Pieniny Mts the latter area should be discussed together with the Dunajec and Poprad valleys, not only because this mountain range is intersected by the Dunajec valley and because the areas situated along the Rivers Dunajec and Poprad have for the Carpathians an exceptionally warm climate but also because these areas have many species in common. Hitherto from the Dunajec and Poprad valleys 37 species of *Apoidea* (excluding the family *Apidae*) have been reported out of 66 known from the whole area of the Polish West Carpathians (Tatras, Mt Babia Góra and Pieniny Mts excluded).

From the Dunajec and Poprad valleys are known two Subpontic (Andrena paucisquama and A. pontica), four Submediterranean (Andrena suerinensis, A. agilissima, A. pusilla, and Osmia adunca), and five Subponto Mediterranean species (Andrena pandellei, A. limata, A. polita, A. niveata, and A. taraxaci).

North Montane elements are represented in the Dunajec and Poprad valleys by two species - Hylaeus annulatus and Dufourea dentiventris. Among the North Central European species collected in the Dunajec and Poprad valleys is Melitta haemorrhoidalis, known from all the discussed areas. The remaining species from these two valleys are widely distributed.

	Number of colle	of species ected		Number of cold- climate1 speciesNumber of xe hermic2 species				of xerot- species		
Mountain ridge	total	common ⁴	QS	total common ⁴		QS	total	common ⁴	QS	
Tatras	139	N		18			9	1 (35) - 1 (35) -s		
Pieniny Mts	153	88	60	5	4	35	19	5	46	
Babia Góra Mt	85	67	60	7	7	56	3	1	19	

Similiarity (QS %) between Apoidea (excl. Apidae) of the Tatras,

1 Montane and North Montane species

²Submediterranean, Subpontic, Subponto Mediterranean, West Submediterranean, Submediterranean Siberian species

.35 species have been reported from the Beskid Niski, Beskid Sądecki, Beskid Wysoki, Beskid Wyspowy, and Beskid Mały Mountains. Out of these 35 species: 1) 24 are widely distributed (19 were found in the Tatras or at least on Mt Babia Góra, but 5 in the lower parts of the Polish West Carpathians only; while of the remaining species 2) 5 occur in North and Central Europe (*Panurgus banksianus, Andrena tarsata, Melitta haemorrhoidalis, Osmia leucomelaena*, and *Macropis fulvipes*); 3) 2 are European Siberian elements (*Andrena coitana* and *A. denticulata*); 4) *Lasioglossum parvulum*, a Subatlantic element, (is known only from Mt Babia Góra and from Mszana Dolna); 5) *Andrena fulva*, reaching in Poland the eastern limit of its distribution (has been recorded from the Polish Carpathians only from Andrychów - Beskid Maly Mts); 6) *A. pilipes*, a South Central European element (inhabits in the Carpathians only lower situated areas - Chabowka, Mszana Dolna, Dunajec and Poprad valleys); 7) *Osmia adunca*, a Submediterranean element (has been reported from many localities in the Polish Carpathians up to zone I N at the foot of the Tatras).

IX. RESULTS

1. 83 species of *Apoidea* (excluding the family *Apidae*) were found in the Tatras, in both their Polish and Slovakian parts, from the lowest parts of the lower mountain forest zone up to the lower part of dwarf montaine pine zone (subalpine zone) (zones II - IV).

2. In the sub-Tatra zone live 56 Apoidea species which do not penetrate the Tatras; the altitudinal range of 61 species ends in the lower montane forest zone, that of 23 species in the upper montane forest zone, and of 8 species in the dwarf mountain pine zone, the numbers of species recorded from N and S slopes being similar (Fig. 3).
Table X

Number of widely distributed ³ species		fairt doro	Number of early- spring species			Number of late- spring species			Number of summer species		
total	common ⁴	QS	total	common ⁴	QS	total	common4	QS	total	common ⁴	QS
112			45			50			44		
130	79	65	56	30	60	57	34	63	40	24	58
75	59	63	30	27	72	37	27	62	18	13	42

Pieniny Mts and Babia Góra Mt.

³Holarctic, Palearctic, West Palearctic, European Caucasian, European Siberian, European species ⁴common for the Tatras and Pieniny Mts., or for the Tatras and Babia Góra Mt.

3. The species composition of the *Apoidea* in the distinguished altitudinal zones changes in the particular months of the vegetation period because it depends upon the time of appearance of species and upon the number of their generations (Tables IV-VII).

4. Early spring species (45) inhabit the Tatras up to the lower part of subalpine zone $(\pm 1600 - 1700 \text{ m})$, hence they do not reach the upper limit of climatic spring. This is the most abundant group of bees (1382 specimens caught). Late spring bees (50 species, 427 specimens caught) were recorded only from the lower and upper montane forest zones but in the latter, i.e. to the upper limit of climatic late spring, only 7 species were found. Summer bees (44 species, 474 specimens) were observed up to the dwarf mountain pine zone. However, in this zone they were represented only by *Panurgus banksianus*. 6 summer species were recorded from the upper montane forest zone, 22 from the lower montane forest zone, and 34 (on S slopes 14) from the foothills (sub-Tatra zone) where there is no climatic summer.

5. There are fewer generations in the dwarf mountain pine zone (subalpine zone) as well as on the northern slopes of the two forest zones than in lower situated areas. In zones II and III early spring species usually appear in three generations, and late spring species in three or only two. In the Tatras on the northern side there is probably one generation less than on the southern one.

6. Spring species occur in the sub-Tatra zone and in the two forest zones from April to the first half of June and in the dwarf mountain pine zone from the end of May till the end of July. On S slopes these species appear about two weeks earlier than on N ones. Late spring species were observed in lower and upper montane forest zone from the end of May on S slopes and in the 2nd half of June on N ones. In July and August there late spring and summer species occurred simulteneously as well as the second generations of early and late spring species. In Sptember and October the third generations of species of the family *Halictidae* were observed on S slopes. On N slopes the flights of species belonging to this family ended in August (there were only two generations).

7. In the Tatras and sub-Tatra zone were found 6 Montane, 12 North Montane (in the Tatras only 10), 4 European Siberian (in the Tatras 2), and 5 North Central European species (in the Tatras 4). These species constitute 19,5% of all the species recorded from the investigated area.

8. In the Tatras (the lowest parts of the lower montane forest zone on S slopes) one Submediterranean species (*Hylaeus cornutus*) and one Submediterranean Siberian (*Andrena flavipes*) are likely to occur. Besides, one South Central European element (*Andrena gravida*) was reported by the author from the dwarf mountain pine zone (on N slopes). Altogether, in the investigated area in zones I N, I S, and II S, the author found 10 species representing Subpontic, Subponto Mediterranean, Submediterranean Siberian, Submediterranean, and South Central European zoogeographical elements (see page 233).

9. Widely distributed species form the most numerous group in the investigated area, 102 being collected, this constituting 73,3% of the total number of recorded species.

10. In the Tatras (zone II S) and the sub-Tatra zone live 70 xerothermic species (about 50% of the total number recorded).

11. The limestone Tatras have a richer Apoidea fauna (excluding the family Apidae) than the granite Tatras (66 and 49 species respectively). The average catch from one locality in the limestone Tatras was 14 specimens, while in the granite Tatras it was 11,4.

12. A markedly smaller number of species in the sub-Tatra zone on S slopes than on N slopes of that zone and in two lower montane forest zone on S slopes indicates that zone I S is the coolest one. A similar situation was found in the corresponding zones on Mt Babia Góra (Fig. 3). Apart from the inversion of temperature, the phenomenon may be explained by the morphological structure of the N and S slopes of the Tatras and Mt Babia Góra. Namely, S slopes are smooth and steep, while N slopes are strongly broken up and rise gradually.

13. The most frequently visited plants in the Tatras and in the sub-Tatra zone were *Hieracium* and *Leontodon* (20,3% of the collected material, 41 species of *Apoidea*), *Salix* (16%, 34), *Potentilla* (6,8%, 22), and *Taraxacum officinale* (5,6%,20). On the remaining plant species or groups of species (Table VIII) the author collected 1-8 bee species in numbers of 1-56 individuals.

14. Most of the bee species were collected as single specimens in warm places sheltered from the north and west and well insolated. Only common species (11) were observed also in coller places. Interestingly localities situated in the highest range of the particular species were found in very warm places, this also concerning the common species.

15. The similarity, expressed by the SØRENSEN index, between the Apoidea fauna of the Tatras (excluding the family Apidae) and that of Mt Babia Góra is the same as that calculated for the faunas of the Tatra and Pieniny Mts (60% in both cases). However, when the particular zoogeographical groups are taken into account, considerable differences may be observed. With regard to Montane and North Montane species the Apoidea fauna

of the Tatras is more similar to that of Mt Babia Góra (56%) than to that of the Pieniny Mts (35%), but with regard to the species of southern or south-eastern origin the similarity between the Tatra and Pieniny faunas of *Apoidea* (46%) is much greater than that between the faunas of the Tatras and of Mt Babia Góra (19%).

X. CONCLUSIONS

1. Submediterranean, Subpontic, Subponto Mediterranean, Submediterranean Siberian, South Central European species as well as summer and xerothermic ones live on the northern slopes of the sub-Tatra zone in relict localities situated in very warm places and they are connected with the microclimate. Hence, in the investigated area these species may be considered as relicts.

2. Common species, found also in cooler places, are connected with the mesoclimate and they have a chance to expand.

3. Species considered as relicts may have reached the sub-Tatra zone and the Tatras when mesoclimatic conditions more favourable for them prevailed in these regions⁽¹⁾.

4. The highest localities of all the Tatra species, situated only in the warmest places, are also relicts. Relict localities were most frequenter situated higher by one climatic zone, e.g. summer species were observed above the limit of climatic summer. For this reason also the relict localities are demonstrate a lowering of climatic zones by 200 - 300 m, similarly as the lowering of the timber line in the Tatras by about 300 m revealed by botanists (MIREK, PIĘKOŚ-MIREK in press).

5. Andrena lapponica, Lasioglossum fratellum, and L. albipes might found in the alpine meadow zone of the Tatras since in the dwarf mountain pine zone they were still abundant (in 5-6 localities 31, 31, and 48 specimens respectively were found) and because on Mt Babia Góra A. lapponica was observed (one specimens) up to and including the alpine zone.

6. Many xerothermic species enter the northern slopes of the sub-Tatra zone along the western and eastern boundaries of the Tatras. This is indicated by the record of Andrena flavipes. The species is known in the Polish Carpathians from the northern side of the sub-Tatra zone only.

7. Xerothermic species reach the northern slopes of the sub-Tatra zone also from the Pieniny Mts through the limestone hills running from that mountain range to Mt. Galicowa Grapa near the village of Poronin (Fig. 1).

8. The upper limit of the altitudinal distribution of bees in the lower montane forest zone distinctly correlates with the upper limit of oat cultivation in the Carpathians alt. (1150-1200 m) and that in the upper montane forest zone with the upper limit of hay

¹According to PAWŁOWSKI (in press), the process of settling of xerothermic species in southern Poland is a dynamics one, and permanent invasion could take place. Its beginning is not clearly defined becouse of a lack of fossil arthropods. The Atlanticum, although it was the warmest period in posglacial times, was not suitable for bees as it was too humid.

meadows (alt. about 1500 m), since almost all the localities recorded from these zones lie in their lower parts. Also in the dwarf mountain pine zone (subalpine zone) the localities of *Apoidea* are situated in its lower part of that zone ($\pm 1600-1700$ m). Thus, the upper limit of distribution of *Apoidea* (excluding *Apidae*) is to be found on the upper limit of late spring in the climatic sense.

REFERENCES

- ALFKEN J.D. 1936. Beiträge zur Kenntnis paläarktischer Bienen. (Hym. Apid.) 5 Beitrag. Mitt. Dtsch. ent. Gesellsch., E.V., Berlin, 6 (5-10): 57-60.
- BALTHASAR V. 1952. Dalsí prispevek k poznání blanokrídleho hmyzu ČSR. Opuscula hymenopterologica X. Acta Soc. ent, Čechosl., Praha, 49: 52-69.
- BELÁKOVÁ A. 1980. Die Bienen (Apoidea) einiger Gebirgsgebiete der Slowakei. Acta Mus. Reginaehradecensis S. A Suppl.: 22-25.
- DATHE H. 1980. Die Arten der Gattung Hylaeus F. in Europa (Hymenoptera: Apoidea, Colletidae). Mitt. zool. Mus. Berlin, 56(2): 207-294.
- DYLEWSKA M. 1958. Fauna trzmieli (Bombus Latr.) i trzmielców (Psithyrus Lep.) Tatr Polskich. Acta zool. cracov., Kraków, 3: 137-197.
- DYLEWSKA M. 1962. The Apoidea of the Pieniny National Park. Part I. Megachilidae and Apidae (partim). Acta zool. cracov., Kraków, 7(14): 423-481.

DYLEWSKA M. 1966. The Apoidea of the Babia Góra Mountain. Acta zool. cracov., Kraków, 11(5): 111-175.

- DYLEWSKA M. 1970. Die Bienen (Hymenoptera: Apoidea) in den Hohen Westkarpaten. Fol. ent. hung. Suppl., Budapest, 27: 349-356.
- DYLEWSKA M. 1987. Genus Andrena FABRICIUS (Andrenidae, Apoidea) in Poland. Pol. Pismo ent., Wrocław, 57: 495-518.
- DYLEWSKA M., NOSKIEWICZ J. 1963. Apoidea of the Pieniny National Park. Part II. Colletidae, Andrenidae, Halictidae, Melittidae, Apidae (Nomada SCOP.). Acta zool. cracov., Kraków, 8(13): 477-532.
- DYLEWSKA M., ZABŁOCKI J. 1972. New and little known Apoidea (Hymenoptera) from Poland. Acta zool. cracov., Kraków, 17(18): 405-414.
- EBMER A. W. 1969. Die Bienen des Genus *Halictus* LATR S. L. im Grossraum von Linz (*Hymenoptera*, *Apidae*). Systematik, Biographie, Ökologie und Biologie mit Berücksichtigung aller bisher aus Mitteleuropa bekannten Arten. Teil I. Naturk. Jahrb. St. Linz: 133-183.
- EBMER A. W. 1970. Die Bienen des Genus Halictus LATR S.L. im Grossraum von Linz (Hymenoptera, Apidae). Teil II. Naturk. Jahrb. St. Linz: 19-82.
- EBMER A. W. 1974. Die Bienen des Genus Halictus LATR S.L. im Grossraum von Linz (Hymenoptera, Apidae). Nachtrag und zweiter Anhang. Naturk. Jahrb. St. Linz: 123-158.
- EMBER A. W. 1975. Neue westpaläarktische Halictidae (Halictidae, Apoidea). Teil III. Linz. Biol. Beitr., Linz, 7(1): 41-118.
- EBMER A. W. 1988. Kritische Liste der nicht-parasitischen Halictidae Österreich mit Berücksichtigung aller mitteleuropäischen Arten (Insecta: Hymenoptera: Apoidea: Halictidae). Linzer biol. Beitr., Linz, 20(2): 527-711.
- HESS M. 1965. Piętra klimatyczne w Polskich Karpatach Zachodnich. Zeszyty Nauk. Uniw. Jagiell., Kraków, 115: 1-258.

KONČEK M. 1974. Klimat Tatr. Veda, Bratislava.

KONDRACKI J. 1978. Geografia fizyczna Polski. PWN, Warszawa.

LUKNIŠ M. 1972. Slovensko. Priroda, Bratislava.

- MICHALIK S. 1979. Charakterystyka ekologiczna kserotermicznej i górskiej flory naczyniowej Ojcowskiego Parku Narodowego. Studia Nat. Ser. A, Kraków, 19: 1-95.
- MIREK Z., PIĘKOŚ-MIREK H. (in press). Szata roślinna Zakopanego i jej przemiany na tle ogólnych przekształceń środowiska przyrodniczego. (In) Zakopane przez 400 lat.

MOCSÁRY A. 1918 Apidae. (in) Fauna Regni Hungariae, Budapest.

- NOSKIEWICZJ. 1920. Przyczynek do znajomości fauny żądłówek Tatr Polskich. Kosmos, Lwów, 45: 145-155.
- NOSKIEWICZ J. 1949. Notatki faunistyczne z okolic Krynicy. Przegl. zool., Wrocław, 2: 235-238.
- PAWŁOWSKI B. 1956. Flora Tatr 1. Warszawa.
- PAWŁOWSKI B., PAWŁOWSKA S., ZARZYCKI K. 1960. Zespoły roślinne kośnych łąk północnej części Tatr i Podtatrza. Fragm. Flor. Geobot., Kraków, 6(2): 95-222.
- PAWŁOWSKI J. (In press) Przemiany fauny od pleniglacjału do holocenu. In: Wielka Geografia Polski. Środowisko przyrodnicze.
- PFOHL E. 1931. Orientierungs-Lexicon der Tschechoslowakischen Republik, Reichenberg.
- SCHMIEDEKNECHT O. 1930. Die Hymenoptera Nord- und Mitteleuropas mit Einschluss von England, Südschweiz und Ungarn, Jena.
- STOECKHERT F. K. 1933. Die Bienen Frankens. (Hym. Apid.). Dtsch. ent. Z., Berlin, 1932, Beiheft.
- SZADZIEWSKI R., PAWLIKOWSKI T., BUSZKO J. 1973. Nowe gatunki muchówek (Diptera), błonkówek (Hymenoptera) i motyli (Lepidoptera) z Pienin. Przegl. zool., Wrocław, 17(2): 192-195.
- SZAFER W., KULCZYŃSKI S., PAWŁOWSKI B. 1986. Rośliny Polskie, Warszawa.
- SZAFER W., ZARZYCKI K. 1972. Szata roślinna Polski, Warszawa.
- ŠNIEŻEK J. 1910. Błonkówki pszczołowate (Apidae), zebrane w Galicji. Spraw. Kom. fizjogr., Kraków, 44: 31-46.
- TOMANEK J. 1952. Wpływ ściany drzewostanu na mikroklimat poręby. Pr.(bed.) Inst. Bad. Leśn., Warszawa, 87: 1-52.
- WIERZEJSKI A. 1868. Przyczynek do fauny błonkówek (Hymenoptera). Spr. Kom. fizjogr., Kraków, 2: 108-120.
- WIERZEJSKI A. 1974. Dodatek do fauny błonkówek (Hymenoptera). Spr. Kom. fizjogr., Kraków, 8: 253-273.