Diagnoses and remarks on the genera of Tortricidae (Lepidoptera). Part 3. Archipini

Józef RAZOWSKI

Received: 15 July 2015. Accepted: 21 December 2015. Available online: 31 December 2015.

Abstract. Comparative diagnoses, redescriptions, and remarks are presented on the genera of the tribe Archipini. Original references, type species, synonyms, numbers of known species, and zoogeographic regions are provided.

Merophyas 1964, is synonymized with Clepsis, 1845.

Key words: Lepidoptera, Tortricidae, Archipini, genera, comparative diagnoses.

I. INTRODUCTION

The number of genera of Tortricidae has increased dramatically over last 50 years; by 2007 there were over 1630 described genera, including synonyms. Many of the older descriptions are scattered throughout the literature, and because there are few larger synthetic treatments of the tortricids for most major biogeographic regions, this large number of taxa complicates considerably the work of taxonomists on the faunas of poorly known regions of the planet. In addition, characters that define many of the genera are not clearly articulated. The distribution of many genera is still insufficiently known, and this shortcoming frequently results in unexpected findings, e.g., the discovery of Afrotropical genera in the Neotropics. These types of discoveries may cause confusion for specialists that focus on the fauna of a single geographic region.

The literature abounds with re-descriptions and diagnoses of tortricid genera, but many are rather short, frequently lacking comparisons with similar or related taxa. Detailed comparative diagnoses are not only useful in systematic work but are required by the International Code of Zoological Nomenclature (1999) for descriptions of new taxa.

In this series of papers on the tortricid genera, diagnoses are based on features provided in the original description, augmented by comments from subsequent papers. My own diagnoses are proposed when no earlier ones are available. Other characteristics of the genera are included when necessary or relevant.

Morphological features that define many genera require revision and/or augmentation. Also, definitions of some genera require brief comments. Some original diagnoses are quoted verbatim, especially when no subsequent evaluation has been done. On the other hand the older diagnoses are occasionally omitted because of their limited importance.
The goal of this series of papers is to present a compilation of the existing data on tortricid genera and to identify what is known and where information is incomplete or lacking.

The account for each genus consists of the original reference, type-species (t. sp.) with the countries of origin (in case of large countries also with their provinces, or large islands), the number of species included originally (e.g., monotypic), and the number of species known at present, the latter often based on the catalogue by Brown (2005). The acronyms of the zoogeographic regions are added. The synonymies are treated in a similar way; the older, well known synonymies easily found in the literature are cited in a shortened form, i.e., without references. The references refer to re-descriptions and diagnoses. The genera are arranged alphabetically which simplifies the index to include only synonymy.

The parts of this series will be published in non-systematic order, depending on the sequence of completion of each group. The two parts are already published are Razowski (2009c) for Phricanthini, Tortricini, and Schoenotenini, and Razowski (2011) for Cochylini. Epitymbiini shall be treated separately in another part of this series based on the interpretation of Horak (1999) and Razowski (2008b). Until the systematic position of the tribe is resolved, I am treating Epitymbini in a traditional sense despite its inclusion as a “Basal Archipini group” by Dombokschie & Sperling (2013).

The Australian genera placed by Common (1963) and Horak (1996) in Cnephasiini and Cnephasiini s.lat., respectively, are provisionally included in Archipini; however, they were previously (e.g. Brown, 2005) regarded as belonging to the “new tribe 1”.

Abbreviations for the zoogeographic regions are as follows: AFR – Afrotropical, AU – Australian, HOL – Holarctic, NEA – Nearctic, NEO – Neotropical, OR – Oriental, PAL – Palaearctic.

Only the references to comments are included in the literature cited; those to original descriptions of the taxa are omitted, as well as those that represent the generic or specific names and the names of their authors and dates of publication. All of the latter are to be found in the monographs and/or catalogues (e.g., Brown, 2006).

II. DIAGNOSIS

Acropolitis Meyrick, 1881

Acropolitis Meyrick, 1881, Proc. Linnean Soc. N.S. Wales, 6: 432; 1. sp.; _Acropolitis walkeri_ Razowski, 1977 replacement name for _Tortrix magnana_ Walker 1863, homonym. OR, AU.

Diagnosis. Meyrick wrote that “*Acropolitis* together with *Adoxophyes, Thrincophora* and *Pyrgotis*, and less intimately with *Aristocosma*” form one group. From _Adoxophyes_ and _Aristocosma_ it differs in the crested thorax; from _Thrincophora_ in the straight, porrect labial palpi. Meyrick, 1881 adds that it is very near *Pyrgotis* and “differs only in the oblong forewing and separation of veins 6 and 7 of hindwings.”

Remarks. Horak (1996) proposed _Sciaphila rudisana_ Walker, 1863 as the type species of this genus. However, Diaconoff (1939) earlier selected _Tortrix magnana_ Walker, 1863 as the type species, and Razowski (1977d) proposed the replacement name _Acropolitis walkeri_ for the latter. Ney & Fletcher (1991) provided additional explanations. Diaconoff (1952) illustrated some species under _Thrincophora_ Meyrick.
I am unable to separate *Acropolitis* and *Thrincophora* until their type species are re-examined. See also *Thrincophora MEYRICK* and *Aoupinieta RAZOWSKI*; also mentioned under *Adoxophyes*, *Catamacia*, and *Pyrgotis*.

Abrepagoge RAZOWSKI, 1992

Diagnosis. *Abrepagoge* was originally compared to *Epagoge*, *Periclepsis*, and *Ramapesia (= Paramesia)*. The presence of the sclerotized comb of the valva, the membranous transilla, and a reduction of the basal lobes of the latter were given as putative autapomorphies for *Abrepagoge*. The less specialized aedeagus and plesiomorphic nondiciduous cornuti are also characteristic of the genus. RAZOWSKI (2002) provided a similar diagnosis and illustrations of the type species.

Acroceuthes MEYRICK, 1881

Acroceuthes MEYRICK, 1881, Proc. Linn. Soc. N.S. Wales, 6: 458; 1. sp.: *Cacocia metaxanthana WALKER, 1863*, Australia: N.S. Wales. Two species known. AU:

Diagnosis. Originally, MEYRICK (1881) compared this genus with *Capua auct.* (the female is “distinguishable from *Capua*”). TURNER (op. cit.) did not provide any comparative diagnosis.

Remarks. The genus requires a re-description.

Adoxophyes MEYRICK, 1881

Diagnosis. Originally, MEYRICK (1881) compared it to *Acropolitis MEYRICK* from which it differs in the absence of a thoracic crest; later MEYRICK (1883) compared it with *Pyrgotis MEYRICK* (“differing in absence of the thoracic crest”).

Adoxophyes is closely related to *Dichelopa LOWER*, but *Adoxophyes* has hindwing vein M2 present whilst in *D. dichroa* LOWER, the type species of *Dichelopa*, M2 is absent. In known females, the signum is posterior with a strongly curved blade.

Remarks. RAZOWSKI (1987) did not find any autapomorphy of *Adoxophyes*, but subsequently RAZOWSKI (2002) presumed the shape and the posterior situation of the signum at base of ductus bursae may represent a synapomorphy. These characters, however, are either variable or not correlated (see CLARKE, 1971 with *Dichelopa*), and the characteristics of this genus need re-consideration.

Also mentioned with *Borboniella*, *Choanograptis*, *Cuspidata*, *Dichelopa*, *Phaenacropista*, *Procalyptis*, *Ptycholoma*, *Ptycholomoides*, *Scoliophyes*, *Snodgrassia*, *Spheterista*, *Vieteae*, and *Zacorisa*.

Allodemis DIAKONOFF, 1983

Anaphelia RAZOWSKI, 1981

Diagnosis. *Anaphelia* differs from *Aphelia* chiefly by the presence of a finely thorned lobe on the dorsomedian part of the transtilla.

Remarks. *Anaphelia* was described as a subgenus of *Aphelia* HÜBNER. DOMBROSIE & SPERLING (2013) elevated *Anaphelia* to generic rank.

Anaryroclepsis DIAKONOFF, 1976

Diagnosis. In genitalia, *Anaryroclepsis* shows some similarities to both the Archips-group of genera and the Clepsis-group. Provisionally, it could be placed near *Isotenes* MEYRICK (elongate, brachiola-like distal part of the valva, specialized transtilla (labides), aedeagus, and plate-shaped proximal end of cestum but very broad lateral parts of uncus and slender lateral parts of sterigma) and some *Clepsis* GUÉNÉE (similar valva, labides).

Remarks. In the original description we (DIAKONOFF 1976) found only that this is “a peculiar form with novel shape of gnathos. Belongs to the large Clepsis group of genera”. RAZOWSKI (1987) suggested that the putative autapomorphies for *Anaryroclepsis* are the shape and size of the socius and presence of strong, dorsal process from the terminal portion of gnathos. Its systematic position remains unclear.

Aneuxanthis LE MARCHAND, 1933

Anauxanthis LE MARCHAND, 1933, Amat. Papillonx, 6: 243; 1 sp.: *[Torrix] locupterana* HÜBNER, 1819; monobasic, Europe. **PAL.**

Diagnosis. RAZOWSKI (1987) mentioned only that the genitalia of this genus are similar to those of *Egogepa* RAZOWSKI, *Gnorismoneura* ISSIKI & STRINGER, *Synochoneura* OBRAZTSOV and *Terthreutis* MEYRICK. According to RAZOWSKI (1987), the only putative autapomorphy of *Aneuxanthis* is the silver ground colour of the forewing.

Anisotenes DIAKONOFF, 1952

Diagnosis. Original diagnosis indicates that *Isotenes* is closely related to *Anisotenes* DIAKONOFF, but *Anisotenes* lacks corethrogyn scaling. For further characteristics, see diagnosis and remarks for *Isotenes*. Differences from *Parachorista* DIAKONOFF [= Battalia KOÇAK] are “much greater size, the broader wing, and a different facies, the pres-
ence of the thoracic crest, and the distinctly different type of the male genitalia...” (DIAKONOFF, 1952).

Remarks. The above mentioned genital differences are, in fact, slight. The genus is also mentioned with Battalia, Harmologa and Isotenes.

Anthophrys DIKONOFF, 1960

Diagnosis. DIKONOFF (1960) mentioned that *Anthophrys* is “very distinct by the male genitalia which suggest a relationship with *Psycholoma*... and also with *Metamesia* but widely differing from both by the absence of any armature of the transtilla and by minor structural differences.”

Remarks. The above mentioned genital differences are, in fact, slight. The genus is definitely solved (see the comments to the former), the status of this genus remains questionable.

Anthophytis MEYRICK, 1930

Diagnosis. No comparative diagnosis.

Remarks. DIKONOFF (1939) reported the original description, e.g., characteristics of the wing venation of the type species. The type species has never been re-examined.

Aoupinieta RAZOWSKI, 2012

Diagnosis. *Aoupinieta* was originally compared to *Williella* HORAK, but *Aoupinieta* has a short, broad uncus, the gnathos without a median plate, and the transtilla fully developed, thorny. The signum of this genus resembles that of *Arotrophora* MEYRICK but is transverse, shorter and situated in the posterior part of the corpus bursae.

Remarks. Until the problem of *Acropolitis* MEYRICK and *Thrinchophora* MEYRICK is definitely solved (see the comments to the former), the status of this genus remains questionable.

Aphelia HÜBNER, [1825] 1816

Aphelia HÜBNER, [1825] 1816, Verz. bekannter Schmett.: 390; 1 sp.: *Torrix viburnana* [DENIS & SCHIFFERMÜLLER], 1775, Europe: Austria; over 30 species known. PAL, NEA, AFR.

Diagnosis. *Aphelia* may be compared to *Lozotaenia* STEPHENS and some other genera listed by DOMBROSKIE & SPERLING (2013). From *Lozotaenia* it differs chiefly in having a simple transtilla and the presence of thorny lobes of the gnathos.
Remarks. OBRAZTSOV (1954) and RAZOWSKI (1987) discussed and characterized all subgenera of Aphelia and suggested that the shapes of the gnathos, sterigma, and signum may be treated as autapomorphies for this subgenus. OBRAZTSOV (1959) and Dombrowskie & Sperling (2013) elevated the subgenera (Anaphelia, Aphelia, Sacaphelia, Zelotherses) to genera.

The name Xenotemna was proposed for Torrix pallorana Robinson, but the description is invalid (not intended description in the key, the type species not designated; however, it was regarded as valid by NYE & Fletcher, 1991). RAZOWSKI (1981) placed pallorana in Aphelia, and Dombrowskie & Sperling (2013) “chose to maintain X. pallorana in its monotypic genus.” The latter species differs from the representatives of Zelotherses Chiefly by the broad uncus, processes of the gnathos, a comb of small thorns in the disc of valva, the sterigma and the ovipositor. The molecular data and the above mentioned morphological characters allow the separation of pallorana into a distinct genus closely related to Aphelia.

Aphelia is also mentioned with Anaphelia, Cryptomelaena, Dichelia, Drocta, Exostarea, Hectaphelia, Lozotaenia, Neocalyptis, Sacaphelia, Syndemis and Zelotherses.

Aphthonocosma DIKONOFF, 1953

Diagnosis. DIKONOFF (1953) wrote: “A peculiar form, structurally nearest to Enoditis Meyrick, 1912, from eastern Siberia, but in fact not related to it.” Enoditis belongs to Sparganothini.

Remarks. The genus was described from one female; there are insufficient characters to draw any additional conclusion.

Archips Hübner, [1822]

Archips HüBner, [1822]. Syst.-alphabet. Verz.: 58; 1 sp.: *Phalaena aporana* Linnæus, 1758, Europe; 90 species included. PAL, OR, NEA.

Archips Freeman, 1958, Can. Ent., 90, Suppl. 7: 15; 1 sp.: *Tortrix packardiana* Fernald, 1886, Canada.

Diagnosis. DIKONOFF (1939) wrote: “*Cacocia* [= *Archips*] is very nearly related to *Homona*, and is its precursor” and that it is “a far offspring of the *Cnephasia*-group.”

Remarks. According to RAZOWSKI (1987), probable autapomorphies are the presence of a costal hindwing scent organ and the shape of the subgenital sclerite of the female. DIKONOFF (1939) included in his *Cacocia* a few remote genera and gave rather generalized comments, and in 1982, he compared *Homona* with *Archips*. RAZOWSKI (1977) commented on the infrageneric system of the genus.

According to Dombrowskie & Sperling (2013), three Nearctic species grouped in *Archippus* constitute a clade closer to *Homona* Walker than to *Archips*. *A. podanus* (SCO-
Diagnoses and remarks of Archipiini, Tortricidae

POLI) was shown as a sister to the former group, but this species is different morphologically (see RAZOWSKI 1977).

Archips is also mentioned under Argyrotaenia, Cacoecimorpha, Chiraps, Choristoneura, Arctephora, Dentisociaria, Homona, Megalomacha, Meridemis, Neocalyptis, Panaphelina, Pandemis, Syndemis, and Tosirips.

Argyrotaenia STEPHENS, 1852

Diagnosis. There is no comparative diagnosis of Argyrotaenia, and only FREEMAN (1958) mentioned that it has “Venation as in Choristoneura”. The male genitalia are similar to those of Archips HÜBNER (especially the vestigial socii, uncus, and transtilla), the female genitalia (in Archips the ductus bursae is long without a proximal sclerite, the cestum is strong, usually present) and the facies are different.

Remarks. RAZOWSKI (1987) wrote that the only autapomorphy for Argyrotaenia is the presence of the proximal sclerite of the ductus bursae. DOMBROŚKIE & SPERLING (2013) presented two main distinctly separated clades and commented on the status of Diedra RUBINOFF & POWELL. For other comments see the latter genus.

This genus is also mentioned with Ceritaenia, Claduncaria, Cunicus, Diedra, Furcataenia, Idolatteria, Neocalyptis, Ochrotaenia, Saetotaenia, Spinotaenia, and Tacertania.

Aristocosma MEYRICK, 1881

Remarks. No comparative diagnosis.

Arizelana DIAKONOFF, 1953

Diagnosis. DIAKONOFF (1953) wrote: “Perhaps nearest Aristocosma MEYRICK, but differing in absence of thoracic crest, little ciliated antennae and broad hind wings, with vein 3 from only slightly before angle”.

Remarks. The sclerotized costa of the valva is probably developed (in the description of the type species the author mentions that it is “somewhat concave”). The signum is in the form of a transverse plate. Not re-examined by me.

Arrotrophora MEYRICK, 1881

Arrotrophora MEYRICK, 1881, Proc. Linn. Soc. N.S. Wales, 6: 419; t. sp.: Scopula arcuata WALKER, 1865, Australia: N. S. Wales, twenty-six species included. OR, AU.

Diagnosis. DIAKONOFF (1939) wrote that this genus is associated with Tortrix [Tortricini]; COMMON (1963) did not compare Arrotrophora to any other genus.
In genitalia, *Arotrophora* is most similar to *Taeniarchis* MEYRIC K, having usually long uncus and socii, and a simple gnathos, but the former has a scrobinate dorsum of the transtilla and the scrobinate signum.

Ascerodes MEYRICK, 1905

Redescription. PHILPOTT (1928).

Diagnosis. In the original diagnosis MEYRICK (1905) wrote: “apparently most allied to Harmologa, from which it differs by the absence of the costal fold; separable from *Proselena* and *Prothelymna* by veins 6 and 7 of hindwings not being stalked.”

Remarks. The male genitalia of *A. prochlora* are similar to those of *Zelotheres* LEDERER and *Hectaphelia* RAZOWSKI. *Ascerodes* has a broad uncus and simple arms of the gnathos and no subcostal sclerite of the dorsal part of the valva.

The genus is also mentioned under *Planotortrix*.

Asteriognatha DIAGONOFF, 1983

Diagnosis. No original comparative diagnosis.

Remarks. The female genitalia of *Asteriognatha* are unknown. The male genitalia are similar to those of *Isotenes* MEYRICK especially in the shape of the uncus, socii, and valva. These species distinctly differ in the shape of gnathos (simple in *Isotenes*).

Asteriognatha is also mentioned under *Planotortrix*.

Atelodora MEYRICK, 1881

Atelodora MEYRICK, 1881, Proc. Linn. Soc. N.S. Wales, 6: 426; 1 sp.: *Atelodora pelochytra* MEYRICK, 1881, South Australia. Two species included. AU.

Diagnosis. In the original description *Atelodora* was compared with the American *Amorbia* CLEMENS, but the latter belongs to a different tribe [Sparganothini].

Authomaema TURNER, 1916

Diagnosis. The original diagnosis states: “A development of *Capua*, distinguished by the stalking of 3 and 4 of forewings”.

Avaria KOÇAK, 1981

Avaria KOÇAK, 1981, Primux, 1: 117; replacement name for *Hastula*. Two species included. PAL.

Hastula MILLIÈRE, 1858, Annls Soc. Ent. Fr., (3)5: 799; 1 sp.: *Hastula hyerana* MILLIÈRE, 1858, preoccupied by *Hastula* ADAMS, 1853, Moi usca, South Europe. Monotypic.
Diagnoses and remarks of Archipini, Tortricidae

Diagnosis. OBRAZTsov (1954) wrote that Hastula [= Avaria] is related to Philedone HÜBNER.

Remarks. OBRAZTsov (1954) supported his diagnosis chiefly by the genital characters. RAZOWSKI (1987) mentioned that the supposed autapomorphies for Hastula are the shape and position of the transtilla and the fusion of the pulvinus and structure of the gnathos. The genus is also mentioned with Philedone.

Bactrostoma DIAKONOFF, 1960

Diagnosis. DIAKONOFF, (1960) stated “nearest to Schoenotenes MEYRICK, 1908, [Schoenotenini] but distinct by pointed gnathos and very long palpi in the two sexes”.

Remarks. RAZOWSKI (2004) placed Bactrostoma in Archipini. Judging from the shape of the transtilla and aedeagus, Bactrostoma is similar to Pandemis HÜBNER but has a specialized gnathos with a long posterior processes of the arm, and a brachiola-like distal part of the valva. The labial palpi, however, are quite different — very large and broad.

Balioxena MEYRICK, 1912

Balioxena MEYRICK, 1912, Exotic Microlepid., I: 12; 1. sp.: Balioxena iospila MEYRICK, 1912, Madagascar. Monotypic. AFR.

Redescription. DIAKONOFF (1960).

Diagnosis. Balioxena originally was placed near Peteliacma but without a comparative diagnosis; DIAKONOFF (1960) concluded that the supposed affinity was very slight.

Remarks. RAZOWSKI (2004) stated that Balioxena is characterized by a long sacculus and apomorphic horn-shaped sclerite of disc of valva, a simple transtilla, and a small coecum penis. The latter character is common to Peteliacma and Balioxena but occasionally is found in other Archipini.

Battalia KOÇAK, 1981

Battalia KOÇAK, 1891, Prinmus, I: 119, replacement name for Parachorista DIAKONOFF, 1952. 20 species included. AU.

Diagnosis. DIAKONOFF (1952) stated that Anisotenes “which is nearest relative of Anisotenes DIAKONOFF” are “much greater size, the broader wing, and a different facies, the presence of the thoracic crest, and the distinctly different type of the male genitalia...”

Remarks. The importance of the above characters should be re-examined. In genitalia, the socii of Battalia are larger than those of Anisotenes, and the cestum shows a tendency toward reduction, but both features are variable.

Borboniella DIAKONOFF, 1957

Diagnosis. DIKONOFF (1957) originally compared Borboniella with the Clepsis-group of genera and Clepsodes, stating “a development of the Clepsis stock and the subgenus Clepsodes ...might represent a transitional form from one genus to the other.” RAZOWSKI (2004) compared Borboniella with Adoxophyes from which it differs by the presence of a plesiomorphic median part of the transtilla and a prominence of the dorsal part of the sacculus; further differences are of less importance.

The genus is also mentioned under Clepsodes, Cornusaccula, Niphothixa, Panaphelix and Procrica.

Borneogena DIKONOFF, 1941

Borneogena DIKONOFF, 1941, Treubia, 18: 403; 1 sp.: Borneogena antigrapha DIKONOFF, 1941, Borneo. Two species. OR.

Diagnosis. In the original paper, the genus is characterized as follows: “An interesting, novel form, probably a development of Epagoge. Genitalia show consideral specialisation.”

Remarks. DIKONOFF (1983) provided additional illustrations of the genitalia but did not comment on the systematic position of the genus.

Brachyvalva DIKONOFF, 1960

Diagnosis. Brachyvalva was originally described in Cnephasiini as a genus of obscure affinity and was compared with the Papuan Paradichelia and the Madagascan Metamesia with a note that this similarity is incidental.

Remarks. RAZOWSKI (2004) mentioned that Brachyvalva is characterized by a long sacculus with a spined termination, the socii and uncus resembling some Choristonera. The aedeagus, however, is different than in the latter and Pandemis. Judging from the original drawing, the transtilla is absent.

Bradleyella ZIMMERMAN, 1978

Diagnosis. ZIMMERMAN (1978) did not find any allied genus and mentioned only that “it has certain features which recall Pararrhaptica, but the genitalia differ”.

Remarks. ZIMMERMAN’s supposition that the genus is allied to Pararrhaptica may by correct, at least on the basis of wing venation and genitalia. The two genera most probably belong to the same group of archipines which are characterized by a strongly reduced costa of the valva. Males of Bradleyella differ from those of Pararrhaptica chiefly in the shape of the transtilla and in the presence of a terminal abdominal scent organ consisting of strong spines and scales (a similar scent organ is found in the Afrotropical Metamesia octogona BRADLEY, 1965); females are more similar in the two genera.

Cacoecimorpha OBRAZTSOV, 1954

Diagnoses and remarks of Archipini, Tortricidae

Diagnosis. In the original description, OBRAZTSOV (1954) mentioned several characters in common to *Cacoecimorpha* and *Choristoneura* LEDERER and one with *Archips* HÜBNER. Based on the larval characters, SWATCHEK (1958) supposed that *Cacoecimorpha* is very closely related to *Archips*.

Remarks. The characters described by OBRAZTSOV are not particularly convincing. RAZOWSKI (1987) wrote that the presence of the collar-shaped sclerite of aedeagus protecting ductus ejaculatorius is the only autapomorphy of *Cacoecimorpha* and later (Razowski 2002) wrote that there is no autapomorphy. Molecular studies shows a close relation of this genus to *Choristoneura*, from which the main morphological difference is the shape of the transtilla.

Cacoecimorpha is also mentioned under *Syndemis*.

Callibryastis MEYRICK, 1912

Callibryastis MEYRICK, 1912, Exotic Microlepid., 1: 13; t. sp.: *Callibryastis pacinota* MEYRICK, 1912, India: Assam. Monotypic. OR.

Diagnosis. There is no original comparative diagnosis. The male genitalia of *Callibryastis* resemble those of *Leontochroma* WALSINGHAM chiefly in having similar valvae, but the signum in the female genitalia of *Callibryastis* is plate-shaped, thorny, and has very small blade.

Remarks. On basis of the present material, I am unable to propose a correct comparative diagnosis. The genus certainly belongs to the group of archipines with a more or less distinct costa of the valva.

Capua STEPHENS, 1834

Capua STEPHENS, 1834, Illustr. Br. Ent., Haustellata, 4: 171; t. sp.: *Capua ochracea* STEPHENS, 1834 – *Tortrix vulgaris* FROLICH, 1928, Europe; ca 10 species included. PAL, OR.

Teratodes GUÉNEE, 1845, Annls Soc. Ent. Fr., (2)3: 168; t. sp.: *Tortrix vulgaris* FROLICH, 1928, Europe. Homonym of *Teratodes* BRÜLLÉ, [1837], Orthoptera.

Diagnosis. MEYRICK (1883) wrote that *Capua* differs from *Ditula* [auct.] only by the presence of a costal fold in the forewing of the male. *Capua* belongs to the group of genera with a fairly well developed costa of the valva and may be related to *Philedonides* OBRAZTSOV as the structures of the genitalia suggest (the valvae, aedeagus, sterigma). MEYRICK (1881) diagnosed *Capua* by comparing its Australian species with two Sparganothini genera.

Remarks. According to RAZOWSKI (1987), putative autapomorphies for *Capua* are the shape of the aedeagus and the presence of a finger-shaped process in the concavity of the sterigma; the shapes of the juxta, sacculus and sterigma seem constant within the genus but are probably of a convergent importance. The above diagnosis cannot be treated as definite.

Capua is mentioned with *Acroceuthes*, *Ditula*, *Epagoge*, and *Metamesia*.

Carphomigma DIAKONOFF, 1953

Diagnosis. DIAKONOFF (1953) wrote “Closely allied to *Pyrgotis* MEYRICK and *Catamaacta* MEYRICK, differs from both by palpus, absence of costal fold and short-stalked...
veins 3 and 4 in hind wing in male, from last named genus also by presence of a double tho-
racic crest and subascending palpi. Also closely allied to the preceding genus [Hiceteria].”

Remarks. According to the original drawing and description, the valva is broadly
elongate; the transtilla complete with broad, thorny lateral parts; and the terminal plate of
the gnathos is bifurcate. There is no description of the dorsal part of the valva (probably the
costa is well developed), hence a correct interpretation of the systematic position of Car-
phomigma is impossible. The genus is unknown to me.

Catamacta MEYRICK, 1911

Redescription. PHILPOTT (1928), DIAKONOFF (1939), OBRAZTsov (1954, after original description).

Diagnosis. In the original description, MEYRICK (1911) mentioned that some of the
included species had been wrongly referred to Adoxophyes MEYRICK; TURNER (1916)
compared Catamacta with Acropolitis and Parasela, which differ from it in wing vena-
tion. DIAKONOFF (1939) wrote “An offspring of the Epagoge branch, and closely allied to
this genus”.

Remarks. Catamacta is also mentioned under Carphomigma, Choanograptis,
Ctenopseustis, Hiceteria, and Planotortrix.

Ceramea DIAKONOFF, 1951

Diagnosis. DIAKONOFF (1951) compared Ceramea with Dicellitis MEYRICK, noting
that it was similar to the latter “except for remote vein 5 in hind wing” and a few other
external characters, and with quite different genitalia, which are “somewhere near the type
of the male genitalia of Adoxophyes MEYR., while the position of Dicellitis, though some-
what obscure...; perhaps the vicinity of Drachmobola MEYR.”

RAZOWSKI (2008) wrote that Ceramea is related to Terthreutis MEYRICK, having
a similar shaped valva, gnathos, and aedeagus, and the shared presence and similar shape
of the postostial lobes of the sterigma. Ceramea differs from Terthreutis chiefly in the
markings of forewing (except for its pale edged basal blotch), the presence of well sclero-
tized medio-lateral parts of transtilla, lateral lobes at the ostium bursae, and the strongly
sclerotized, submedian signum.

Ceritaenia RAZOWSKI & BECKER, 2000

Ceritaenia RAZOWSKI & BECKER, 2000, Acta zool. cncov., 43(3-4): 207; t. sp.: Ceritaenia ceria
RAZOWSKI & BECKER, 2000, Rio Grange do Sul, Brasil. Monotypic. NEO.

Diagnosis. Ceritaenia was compared to Argyrotaenia STEPHENS (the two genera
share a similar uncus, gnathos, transtilla, etc.) and Furcataenia RAZOWSKI & BECKER (the
two sharing a similar, probably synapomorphic spiny termination of the sacculus and the
absence of a median process of transtilla).
Diagnoses and remarks of Archipini, Tortricidae

Chamaepsichia RAZOWSKI, 2009

Chamaepsichia RAZOWSKI, 2009, Polish J. Entomol., 78(3): 243; 1 sp.: *Mietropsichia duranti* WALSINGHAM, 1914; Brazil: Pará. Two species known. NEO.

Diagnosis. *Chamaepsichia* was compared to *Rubropsichia* RAZOWSKI from which it differs in having a rod-like uncus and the complete atrophy of the socii.

Remarks. Other differing characters are in RAZOWSKI (2009) for *Rubropsichia*.

Chiraps DIAKONOFF & RAZOWSKI, 1971

Chiraps DIAKONOFF & RAZOWSKI, 1971, Ent. Berichten, 31: 36; 1 sp.: *Caceocia all oica* DIAKONOFF, 1948, Java. Four species included. PAL, OR.

Diagnosis. There is no original comparative diagnosis (“apparently it belongs in the large Archips Hb. group of genera”). RAZOWSKI (1987) wrote that *Chiraps* has highly specialized male genitalia showing some characters in common with the *Archips*-group of genera and that the shapes of wings and vinculum recall those of *Archips* HÜBNER.

Remarks. RAZOWSKI (1987) mentioned that the supposed autapomorphies for *Chiraps* are the bifurcated uncus and the plate-shaped parts of the transtilla.

Choanograptis MEYRICK, 1938

Redescriptions. DIAKONOFF (1939, 1953).

Diagnosis. MEYRICK (1938) supposed that *Choanograptis* is allied to *Pyrgotis* MEYRICK and placed it near *Catamacta* MEYRICK “from which it only differs by the shape of palpi”. Later DIAKONOFF (1953) wrote “Correlated with the Asiatic *Leontochroma* WALSINGHAM and perhaps also with *Ulodemis* MEYRICK, and judging by the male genitalia, also with *Adoxophyes* MEYRICK.”

Remarks. The genitalia of the type species remain unknown (the holotype abdomen is missing). DIAKONOFF (1953) described *C. paragraphe* as nearest to *didyma*; the former has a large, broad uncus, minute socii, a finely thorned end of the arm of gnathos, and slightly expanding bases of the transtilla. *Choanograptis* is also mentioned with *Mersa*.

Choristoneura LEDERER, 1859

Choristoneura LEDERER, 1859, Wien. Ent. Mschr., 3: 246; 1 sp.: *Tortrix diversana* HÜBNER, 1817]. Europe; ca 40 species included. PAL, OR, AFR, NEA.

Diagnosis. OBRAZTSOV (1954) compared *Choristoneura* to *Archips* HÜBNER mentioning chiefly characters of limited importance. RAZOWSKI (1987) compared *Choristoneura* to *Meridemis* DIAKONOFF with the comment “if [the latter] is distinct.” KAWABE (1965) distinguished *Hoshinoa* from *Archippus* and *Archips* HÜBNER by the forewing ve-
nation “and male genitalia, but shares the common structures with Choristoneura adumbratana ...; when the male genitalia of this resembles rather Homona than Archips and Archippus, differs from it in the separating of M5 and M4.”

Remarks. According to RAZOWSKI (1987), the shape of the dorsal part of uncus is the putative autapomorphy for Choristoneura. RAZOWSKI (2004) mentioned that this character, redescribed as the dorso-terminal position of the uncus, is more widely distributed in the subfamily as it was found in Asian Meridemis. Cornicaecoea was described as closely related to Choristoneura and the diagnostic characters are presented in a redescrip-

In addition it is easily distinguished from other Tortricid genera by the hollowed head. Choristoneura and Cudonigera was compared (RAZOWSKI & BECKER, 2000a) to Argyrotaenia STEPHENS, from which it differs in having a very large, well sclerotized uncus, a strong gnathos provided with a distinct process, and dorsolateral process of the transtilla.

Diagnosis of Cudonigera. In the original paper, Cudonigera was compared to Choristoneura and distinguished based on small differences in the venation and male genitalia, and the presence of a helmet-shaped eighth abdominal tergite. DOMBROSKIE & SPERLING (2013) synonymized Cudonigera with Choristoneura on basis of molecular data and supposed that Choristoneura is polyphyletic.

Claduncaria RAZOWSKI & BECKER, 2000

Diagnosis. Claduncaria was compared to Choristoneura and distinguished based on small differences in the venation and male genitalia, and the presence of a helmet-shaped eighth abdominal tergite. DOMBROSKIE & SPERLING (2013) synonymized Cudonigera with Choristoneura on basis of molecular data and supposed that Choristoneura is polyphyletic.

Clepsis GUENÉE, 1845

Clepsis GUENÉE, 1845, Annls Soc. ent. Fr., (2)3: 168; 1. sp.: Torrix rustica HUBNER, [1819], Europe. Over 60 species included. PAL, OR, AFR, NEA, NEO.

Diagnosis. No comparative diagnosis; the genus requires a thorough revision.
Remarks. OBRAZTSOV (1954) stated that Siclobola is only a subgenus of Clepsis, and RAZOWSKI (1979) synonymized three of the above mentioned genera, except for Pseudamelia; RAZOWSKI (1987) later commented on the subgenera and suggested that there is no autapomorphy for Clepsis.

Merophyhas has no external and genital differences to the species related to C. unicolorana (DUPONCHEL, not OBRAZTSOV). COMMON (1964) provided the following diagnosis of Merophyhas comparing it to Epiphyas TURNER: similar valva but that of latter has usually "membranous terminal lobe, poorly differentiated from the valvula. The transtilla is replaced by spined basal process of the valva [labis], and the mensis ventralis is present.” It may be “at once distinguished from Epiphyas in the female by the colliculum, and in the male by the roughened sacculus and series of external thorns on the aedeagus, and the strongly arched, very spiny basal process of the valva.”

A molecular study by DOMBROSKIE & SPERLING (2013) has not solved the problem but has placed Epiphyas TURNER within Clepsis close to C. fucana (WALSINGHAM), which is most probably related to Merophyhas. Five species forming the sister group for the former are closely related to Smicrotes peritana CLEMENS.

Clepsis is also mentioned under Ancyroclepsis, Anthophrys, Borboniella, Clepsodes, Epichoristodes, Epiphyas, Ericodesma, Eurytheca, Homonoides, Leontochroma, Leptochroptila, Orilesa and Paramesia.

Clepsodes DIAKONOFF, 1957

Diagnosis. There is no diagnosis in the original description. RAZOWSKI (2004) compared Clepsodes with Borboniella DIAKONOFF as follows: male genitalia similar to the latter with separate lateral parts of the transtilla (the labides) known in Clepsis GUENÉE and without a small dorsal prominence of the median portion of the sacculus. He also suspected that Clepsodes is synonymous with Clepsis.

Remarks. Clepsodes was described as a subgenus of Clepsis, without any comparison. Most probably, Clepsodes is a synonym of Borboniella. RAZOWSKI (2004) removed Clepsodes from the synonymy of Clepsis.

Coeloptera TURNER, 1945

Coeloptera TURNER, 1945, Trans. R. Soc. S. Austral., 69: 54; 1 sp.: Coeloptera castaniana TURNER, 1845, Australia: New South Wales – Capua vulpina TURNER, 1845. Three species. AU.

Diagnosis. In the original diagnosis TURNER (1945) wrote: “A derivative of Capua with peculiarly shaped forewings.”

Remarks. In male genitalia, Coeloptera vulpinae (TURNER, 1916) is similar to Heterochorista DIAKONOFF especially in the shape of the socii, transtilla, and valve, but Coeloptera has quite different facies and female genitalia (sterigma, antrum). Only the above species was examined by me.

Cornips RAZOWSKI, 2010

Cornips RAZOWSKI, 2010, Zootaxa, 2469: 9; 1 sp.: Tortrix dryocausa MEYRICK, 1938, Democratic Republic of Congo. Five species includes. AFR.
Diagnosis. RAZOWSKI (2010) compared *Cornips* to *Choristoneura* Lederer, indicating that the two have similar wing venation. *Cornips* is distinct by the autapomorphic *transtilla* which has a pair of strongly sclerotized curved processes, and by the presence of a tooth medially on the sacculus.

Cornucleopsis RAZOWSKI & BECKER, 2000

Diagnosis. *Cornucleopsis* was compared to the *Clepsis*-group of genera. It is characterized by two putative autapomorphies: the presence of a long, specialized labis and a slender process of the zone.

Cornusaccucla DIAKONOFF, 1960

Diagnosis. DIAKONOFF (1960) stated that *Cornusaccucla* “Belongs to the *Borboniella* group of genera” and based on the key, shares a transtilla in the form of “a denticulate narrow band”. However, this character is often found in Archipini, and the male genitalia of *Cornusaccucla* are extremely similar to those of *Clepsodes* and *Borboniella* DIAKONOFF. *Cornusaccucla* may be a synonym of the latter, from which it differs only in the stalked forewing veins R4- R5 (separate in *Borboniella*) and the setose distal half of the sacculus.

Cosmiophrys DIAKONOFF, 1960

Diagnosis. DIAKONOFF (1960) originally stated that *Cosmiophrys* belongs to the *Epagoge* group of genera and is perhaps nearest to *Anthophrys* DIAKONOFF from which it is “very distinct by the large uncus, the transtilla and the venation.”

Remarks. RAZOWSKI (2004) commented that the shape of the transtilla is a probable autapomorphy for this genus; however, a similarly shaped transtilla is observed in other genera.

Cryptomelaena DIAKONOFF, 1983

Diagnosis. DIAKONOFF (1983) concluded “Male with *Homona*-like genitalia, but an almost Cochylid robust and simple, heavily armed aedeagus; and the female with a characteristic dentate signum, reminding one rather of Palaearctic *Aphelia*, but with an unusual sclerotic corpus bursae, again resembling a cochylid!”

Cryptoptila MEYRICK, 1881

Diagnoses and remarks of Archipini, Tortricidae

Diagnosis. In the original diagnosis, MEYRICK (1881) wrote “nearly allied to Tortrix [Tortricini];...differing in large costal tuft of scales of the hindwings; superficially it has more appearance of Cacoecia.”

DIAKONOFF’s (1953) diagnosis of Arctephora states “Nearest to Ctenopseustis MEYRICK, 1885, from New Zealand and South America, differing by ascending palpus, thoracic crest and very long tegulae. Judging by the male genitalia also correlated with Carphomigma and Nikolaia.” Earlier DIAKONOFF (1939) treated CRYPTOPTILA as a synonym of Cacoecia (= Archips HÜBNER).

Ctenopseustis MEYRICK, 1885

Ctenopseustis MEYRICK, 1885, New Zealand J. Sci., 2: 348, 1. sp.: Teras obliquana WALKER, 1863, New Zealand. Six species known. AU.

Diagnosis. Originally diagnosed by the following: “Characters of Cacoecia, but lower median of hindwings pectinated.” DUGDALE (1990) wrote “The Ctenopseustis & Planotorrrix subgroup is most closely approached in facies by the alpine genus Gelo-phaula (which has thickened antennae, and an entire forewing termen) and by Catamacta (which has forewing veins R4, R5 stalked).” The genus was also compared with Xenothicis MEYRICK (with “eversible lobes of the ovipore chamber”).

Remarks. Ctenopseustis is also mentioned under Catamacta, Cryptoptila, Epalxia, Stegophora, Leucotenes, and Williella.

Cununcus RAZOWSKI & BECKER, 2000

Diagnosis. The genus was originally compared to Argyrotaenia STEPHENS; the two genera share similar shapes of the uncus, valva, transtilla, juxta and aedeagus. Supposed autapomorphies of Cununcus include the configuration of the uncus and gnathos, and the sclerotization of the socii.

Cuspidata DIAKONOFF, 1960

Diagnosis. DIAKONOFF (1960) stated that “this natural group might represent a connection between Parapandemis and Epichoristos group of genera. The genus is probably related to Lozotaenia.” RAZOWSKI (2004) commented that the genus is very close to Pandemis and Niphothixa and differs from them in the presence of at least one small dorsal thorn of the lateral part of the transtilla (a probable autapomorphy), which in the subgenus Pilophorica is absent or cuspidate. The aedeagus and cornuti in these genera are similarly shaped. The subgenera differ in wing venation and some minor genital characters, which may be of lesser importance (e.g., the absence of the signum). The original diagnosis of Pilophorica is as follows: “the neuration seems to point to a relation of the genus Cuspidata with Adoxophyes”. Additional remarks on this genus are found in RAZOWSKI (2004).
Daemilus YASUDA, 1972

Daemilus YASUDA, 1972, Bull. Univ. Osaka Pref., (B)24: 81; 1 sp.: *Cacoceria fulva* FILIPJEV, 1962, Russia: Primorsk; monotypic. Four species known. **PAL, OR.**

Diagnosis. No original comparative diagnosis. RAZOWSKI (1987) mentioned that *Daemilus* is similar to the *Archips*- and *Clepsis*-groups of genera. Judging from the male genitalia, *Daemilus* is related to *Epiphyas* TURNER, but the female genitalia differ from the latter in having a well-developed cup-shaped part of the sterigma.

Dentisociaria KUZNETZOV, 1970

Diagnosis. Originally this genus was compared to *Syndemis* HÜBNER, but according to RAZOWSKI (1987), the shapes of the disc of the valva and transtilla show a closer relationship to *Archips*. RAZOWSKI (1987) also suggested that the only autapomorphy for *Dentisociaria* is the shape and sclerotization of the socii.

Diactora DIAKONOFF, 1960

Diagnosis. DIAKONOFF (1960) compared *Diactora* to the Asian *Diactenis* MEYRICK, 1907 and placed it at the end of Schoenotenini after *Furnicula* DIAKONOFF.

Dicanticinta YASUDA & RAZOWSKI, 1991

Diagnosis. In original paper YASUDA & RAZOWSKI (1991) compared *Dicanticinta* to *Pseudargyrotoza* OBRAZTSOV (similar shape of the valva), but the former differs in having a small group of minute spines in the dorsobasal part of the valve, which is a probable synapomorphy with *Drachmobola* MEYRICK.

Remarks. In genitalia, *Dicanticinta* is also similar to *Taeniarchis* MEYRICK (type species *T. periorma* (MEYRICK, 1931) from Australia, but the latter has long, rigid socii, proximal lobes of the transtilla, and a simple, long ductus bursae without an accessory bursa. *Dicanticinta* is also mentioned under *Kanikehia*.

Dicellitis MEYRICK, 1908

Dicellitis MEYRICK, 1908, J. Bombay Nat. Hist. Soc., 18: 616; 1 sp.: *Dicellitis nigridula* MEYRICK, 1908, India. Three species. **OR.**

Redescription. DIAKONOFF (1939).

Diagnosis. MEYRICK (1908) provided no comparative diagnosis; however, DIAKONOFF (1939) suggested that MEYRICK regarded it “as a probable derivation of *Spatalistis* [Tortricini].” Judging by the genitalia and venation, *Dicellitis* belongs to the group of *Epagoge* HÜBNER and is closely related to *Gnorismoneura* ISSIKI & STRINGER (revised by
Dichelia

Dichelia Guénée, 1845

Three species known. PAL.

Diagnosis. Obraztsov (1954) compared Parasyndemis to Choristoneura Lederer, describing external and genital characters.

Remarks. Razowski (1987, 2002) suggested that the shape of the gnathos and the presence of a submedian process of the sacculus are putative autapomorphies for Dichelia. It was placed near Aphelia Hübner, but this was a provisional assignment. This point of view was confirmed by the molecular study by Dombskie & Spérling (2013), but Dichelia was more closely related to Syndemis Hübner than to Aphelia.

Dichelopa Lower, 1901

Dichelopa Lower, 1901, Trans. R. Soc. S. Austral., 25: 76; 1 sp.: Dichelopa dichroa Lower, 1901, monotypic; Australian. Over 50 species included.

Diagnosis. Lower (1901) mentioned Cheimatophila Stph. and stated that “Its resemblance to Dichelopa is superficial only.”

Dichelopa is closely related to Adoxophyes Meyrick but differs from it in the absence of hindwing vein M2 and the absence of the signum.

Remarks. Clarke (1971, 1986) described and illustrated numerous Oceanian species all with the signum missing and many with hindwing vein M2 absent. In the forewing, the two last radial veins are stalked to various degrees, or they originate from one point. For further remarks see comments under Adoxophyes Meyrick.

Diedra Rubinooff & Powell, 1999

Diagnosis. Originally (Rubinooff & Powell 1999) Diedra was compared to Argyrotaenia Stephens and diagnosed as having “heavily sclerotized genitalia; uncus large,...; aedeagus elongate, slender,...; cornuti absent; a pronounced, distinct dorsally flattened flange ...”

Remarks. Razowski & Becker (2000b) commented on the above characters. Based on molecular analyses, Dombskie & Spérling (2013) found deep division between the clade of Diedra and the remaining clades of Argyrotaenia Stephens. They indicated that they could either add to this clade three other morphological rather dissimilar species or “maintain the nomenclatorial status quo.” Razowski & Becker (2000b) shared the same point of view, preserving this genus.
Digitosa DIAKONOFF, 1960

Digitosa DIAGNOSIS. The genus was originally characterized “by the remarkable transtilla. Apparently the group represents a moderately specialized branch of *Parapandemis* stock.”

Remarks. RAZOWSKI (2004) mentioned that *Digitosa* is closely related to *Pandemis* HUBNER. He concluded that a putative autapomorphy is the presence of a series of rounded terminal processes of the lateral parts of the transtilla and that other characters seem to be of convergent importance.

Diplocalyptis DIAKONOFF, 1976

Diplocalyptis DIAGNOSIS. DIKONOFF (1976) originally compared *Diplocalyptis* to *Neocalyptis* DIKONOFF, stating “differing chiefly by the furcate uncus and modified, extended vinculum portion”.

Remarks. RAZOWSKI (1987) supposed that this genus may be synonymous with *Neocalyptis*. Some genital characters of *Diplocalyptis* are rather variable.

Digitula STEPHENS, 1829

Diagnosis. GUÉNEÉ’s (1845) diagnosis is superficial. OBRAZTsov (1954) mentioned that the antenna is indetical to that of *Capua*. RAZOWSKI (1987) compared *Batodes* to *Geogepa*, mentioning that the external position of the brachiola is a probable synapomorphy.

Doridostoma DIAKONOFF, 1973

Diagnosis. DIKONOFF (1973) described *Doridostoma* as “apparently nearest to *Pandemis* Hb., but with a complicated gnathos, thorny transtilla and small valva. These characters and also indefinite sackus separate this form from *Parapandemis*. The species has the appearance, rather, of *Epichoristodes* but the genitalia are widely different.”

Remarks. RAZOWSKI (2004) basically reiterated the original diagnosis.

Drachmobola MEYRICK, 1907

Drachmobola MEYRICK, 1907, J. Bombay nat. Hist. Soc., 17: 978; 1 sp.: *Drachmobola periastra* MEYRICK, 1907, India, monotypic. Five species included. PAL, OR, AU.

Diagnoses. In the original description MEYRICK (1907) states “Allied to Epagoge and to the following genus [Spatalists MEYRICK, Tortricini].” DIAKONOFF (1939) realized that Drachmobola is externally similar to Spatalists [Tortricini] but is “remote from it”. COMMON (1963) wrote that the “presence of metallic scales near the tornus of the hindwing suggests that the genus is allied to Taeniarchis.” In addition, YASUDA & RAZOWSKI (1991) compared the female genitalia of this genus to those of Dicanticinta diticinctana (WALSINGHAM, 1900). Drachmobola is also mentioned under Dicaticinta and Minutargyrotoza.

Droceta RAZOWSKI, 2006

Droceta RAZOWSKI, 2006, Polish J. Entomol., 75(3): 418; 1. sp.: Torrix cedrona MEYRICK, 1908, South Africa. Monotypic. AFR.

Diagnoses. RAZOWSKI (2006) originally compared the facies of Droceta with those of Hectaphelia hectaea (MEYRICK, 1911); in Droceta the forewing is slender with the basal markings well developed; the male genitalia differ from all known tortricine genera. The supposed autapomorphies for Droceta are the complete atrophy of the gnathos, the presence of latero-terminal lobes and the median process of terminal part of tegumen, the shape of the basal process of costa of the valva, and the termination of the aedeagus. Droceta is also mentioned under Phalarotortrix and Nkandra.

Durangarchips POWELL, 1995

Remarks. Durangarchips was cataloged by POWELL & al. (1995) and BROWN (2005), but it never was formally described. [Gilligan and Brown, in press, formally describe a new genus for Torrix druana and a new species from Costa Rica.]

Dynatocephala DIAKONOFF, 1983

Diagnoses. In the original description DIAKONOFF (1983) states Dynatocephala is similar to Homona WALKER “but with characteristic aberrant male genitalia: with a broad not narrowed tegumen, uncus broad and depressed, rounded-triangular, strongly bristled at the basis, without separate socii, gnathos with long point, as long as arms, transtilla with a median process...”

Ecclitica MEYRICK, 1923

Redescription. PHILPOTT (1928).

Diagnoses. There is no original comparative diagnosis. DUGDALE’s (1966b) diagnosis of Curvisaccula is as follows: “The genus resembles particularly the Australian Paraphyses COMMON (Cnephasiini) in shape of the uncus, and in a complex gnathos, but can be distinguished by the sacculus structure. It is distinguished from Ochetarcha by the absence of a U-shaped fultura superior and by the form of the sacculus. From Laciniiella it is readily distinguished by the course of vein R5.”

Egogepa RAZOWSKI, 1977

Diagnosis. In the original description _Egogepa_ is compared to _Gnorismoneura_ ISSIKI & STRINGER and _Epagoge_ HÜBNER, from which _Egogepa_ differs by the atrophy of the coecum penis and the absence of a signum, and from _Gnorismoneura_ chiefly by the shape of the aedeagus and transtilla.

Remarks. RAZOWSKI (1987) compared _Egogepa_ to _Gnorismoneura_, and concluded that features of the aedeagus (i.e., a completely reduced coecum penis and the presence of proximal opening for ductus ejaculatorius) are the only supposed autapomorphies for this genus.

Elaeodina MERICK, 1926

Elaeodina MEYRICK, 1926, Sarawak Mus. J., 3: 149; t. sp.: _Elaeodina refrigera_ MEYRICK, 1926, one species. OR.

Diagnosis. In the original description MEYRICK hypothesized that this genus is intermediate between _Argyrotoxa_ and _Spatalisis_.

Remarks. DIKONOFF (1939) reiterated the original description of the genus. The type-specimen is in the Sarawak Museum and was not examined by me. The species requires re-description.

Electraglaia DIKONOFF, 1976

Diagnosis. In the original description DIKONOFF (1976) mentioned only its “relationship with _Clepsis_ group of genera”.

Remarks. In male genitalia, _Electraglaia_ resembles _Ulodemis_ MEYRICK especially in the shape of the costa of the valva, the gnathos, and the basal part of cornutus. Females of the two genera have similar signa but differ strongly in the shape of the cup-like part of the sterigma.

Epagoge HÜBNER, [1825] 1816

Epagoge HÜBNER, [1825] 1816, Verz. bekannter Schmet.: 389; t. sp.: _Torrrix jahnii_ HÜBNER, [1799] ~_Pyralis grotna_ FABRICIUS, 1781; Central Europe. Two species included. **PAL**.

Diagnosis. OBRAZTSOV (1954) compared _Epagoge_ to _Capua_ STEPHENS and mentioned some earlier interpretations of the genus. _Epagoge_ is probably related to _Paramesia_ STEPHENS and _Abrepagoge_ RAZOWSKI, but _Epagoge_ has a strongly reduced sclerotized part of the costa of the valva and a complete transtilla.

Remarks. DIKONOFF (1939) based his redescription on _E. grotiana_ but included in the synonymy of _Epagoge_ some remote genera. RAZOWSKI (1987) mentioned that the only putative autapomorphy for _Epagoge_ is the shape of the dorsal part of the valva (a short sclerotized base and long submembranous remaining part).
Diagnoses and remarks of Archipini, Tortricidae

Epalsiphora MEYRICK, 1881

_Epalsiphora MEYRICK, 1881, Proc. N. S. Wales, 6: 647; 1. sp.: Epalsiphora axenana MEYRICK, 1881, New Zealand. One species: AU.

Redescription. PHILPOTT (1928).

Diagnosis. MEYRICK (1881) wrote that it is “rather uncertain to what group it is most allied, but it agrees in its main characters with _Penthina_...”

DUGDALE (1990) compared _Ctenopseustis_ MEYRICK to _Epalsiphora_ which “differ in wing shape...” _Ctenopseustis_ has “unmodified patagia, modified scales on the male hindwing, notable uncus and socii structure” etc. In _E. axenana_ (examined by me) the costa of the valva is weakly sclerotized, the transtilla simple, the ductus bursae is mostly strongly sclerotized, and the signum has a distinct capitulum like species of _Ctenopseustis_ and _Leucoatenes_ DUGDALE. _E. axenana_ has long, rigid socii; composite cornuti; and well sclerotized lateroterminal parts of tegumen which may prove characteristic of this genus.

Epichorista MEYRICK, 1909

Redescriptions. PHILPOTT (1928), DIAKONOFF (1939).

Diagnosis. MEYRICK (1909) compared _Epichorista_ with _Tortrix_ auct. stating the former “is distinguished from _Tortrix_ by the separation of veins 3 and 4 of hindwings ...”, and MEYRICK (1911) stated that “This genus is a development of _Tortrix_.”

Remarks. PHILPOTT (1928) illustrated the male genitalia of 12 species. The uncus is well developed, the socius small, the aedeagus simple, the costa of valva sclerotized, and the transtilla usually membranous medially. I have examined _E. emphanes_ (MEYRICK, 1902) the genitalia of which resemble the Palaeartecic _Paramesia_-species. _Epichorista_ is also mentioned under _Paramesia_ and _Paranepsia_.

Epichoristodes DIAKONOFF, 1960

Diagnosis. Originally DIAKONOFF regarded this genus as “intermediate between two large groups, at one hand, _Goniotorna_ MEYR., through its subgenus _Tenuisaccula_ nov., with similarly serrate transtilla, but with a broader uncus and a modified valva – and the very extensive _Clepsis_ group of genera... from this latter group _Epichoristodes_ differs by very large socii, slender uncus and characteristic, simple valva.”

Remarks. Based on DIAKONOFF’s illustrations, RAZOWSKI (2004) concluded that the transtilla is variable and extends ventrad and fuses with the pulvinus, similar to that found in _Pandemis_ and some closely related genera. Therefore, RAZOWSKI (2002) placed _Epichoristodes_ in the _Pandemis_-group of genera.

The genus was divided into two subgenera, the nominotypical subgenus and _Tubula_.

Tubula DIAKONOFF, 1960

Diagnosis. *Tubula* was described as a subgenus of *Epichoristodes* from which it differs chiefly by the shape of the transtilla.

Remarks. *Tubula* was originally characterized as follows: “males without labis. Females with lamella postvaginalis weak. Colliculum long. Signum smooth, obtuse.” Based on the examination of the type-species, RAZOWSKI (2002, 2004) found that *Tubula* weakly differs from the nominotypical subgenus (transtilla is indistinctly expanded laterally not forming the typical labis, and differences in the female genitalia are even smaller). In the nominotypical subgenus there is a well developed transtilla, but it is strongly constricted in middle and its lateral parts are convex, thorny dorsally.

Epiphyas TURNER, 1927

Diagnosis. In his description of _Austrotortrix_, BRADLEY (1956) wrote that it should be placed near _Isotenes_ MEYRICK and _Harmologa_ MEYRICK.

Remarks. RAZOWSKI (1987, 2002) suggested that _Epiphyas_ is related to _Clepsis_ GUENÉE, especially to the _peritana_-group of species (_Smicrotes_ CLEMENS) which has an identical abdominal male scent organ. Based on molecular data, DOMBROSKIE & SPERLING (2013) realized that _Epiphyas_ may be subordinate within _Clepsis_ GUENÉE.

Ericodesma DUGDALE, 1971

Ericodesma DUGDALE, 1971, Pacific Insects Monogr., 27: 158; t. sp.: _Tortrix melanospersma_ MEYRICK, 1916, New Zealand. Fourteen species included. AU.

Diagnosis. DUGDALE (1971) wrote: “_Ericodesma_ is distinguished by the shape of the valval costal sclerite in the male, and in the female, by the presence of a cestum (absent in _Epiphyas_ TURNER and _Merophyas_ COMMON), and a signum (absent in _Eurythecta_, _Merophyas_, and undescribed genus).”

Remarks. This genus is allied to _Clepsis_ GUENÉE or some of its synonyms which require a thorough revision. In the genitalia, _E. melanospersma_ is very similar to the Palaearctic _Clepsis coriaceana_ (REBEL, 1894) from the Canary Islands (see RAZOWSKI, 1979).

Eurythecta MEYRICK, 1883

Redescription. PHILPOTT (1928).

Diagnosis. MEYRICK wrote that _Eurythecta_ “appear ancestral, but rather as an eccentric development of _Tortrix_ [Tortricini].”

Remarks. The type species of _Eurythecta_ is closely related to the species of the genera (or their synonyms) of the _Clepsis_-group, e.g., _Epiphyas_ TURNER.

Exorstaenia RAZOWSKI & BECKER, 2000

Exorstaenia RAZOWSKI & BECKER, 2000, Acta zool. cracov., 43(3-4): 203; t. sp.: _Exorstaenia festiva_ RAZOWSKI & BECKER, 2000, Brazil: Santa Catarina. Two species included. NEO.
Diagnoses. *Exorstaenia* was originally compared to *Aphelia* HÜBNER; the putative autapomorphy for *Exorstaenia* is the presence of a minutely spined membrane surrounding the gnathos. From *Aphelia* it differs in the shape of the gnathos, the lack of a discal sclerite of the valva, and the presence of the sclerotized area near the base of the transtilla.

Furcataenia RAZOWSKI & BECKER, 2000

Diagnoses. *Furcataenia* was originally compared to *Argyrotiecta* STEPHENS; putative synapomorphies for *Furcataenia* are the shape of the uncus, the reduction of the socii, and the shape of the valva in the male genitalia, and the shape of the signum in the female. The putative autapomorphies for *Furcataenia* are the presence of a very large, slender, median process of the transtilla, the configuration of the sacculus, the large lobes of the anelus extending from caulis, the shape of the sterigma, and the presence of lobes of the subgenital sternite.

Furnicula DIAKONOFF, 1960

Diagnoses. DIAKONOFF (1960) suggested that *Furnicula* is closely related to *Diactenis* MEYRICK; the two genera have a similar furcate uncus and an H-shaped gnathos. DIAKONOFF mentioned that “the hairy lobi anales are typically Schaanoteninae”, and that adults have “raised scale tufts of the fore wing, and thickened veins on the under side of wings, fringed by rows of dense scales.”

Remarks. RAZOWSKI (2004) listed the following supposed autapomorphies for *Furnicula*: the presence of large lateroterminal parts of the uncus and the spined lobes of the gnathos; other characters of uncertain significance include the completely reduced costa of valva and the broad dorsolateral lobes of the transtilla, which are known in several other genera of this tribe.

Gelophaula MEYRICK, 1923

Redescription. PHILPOTT (1928).

Diagnoses. There is no original comparative diagnosis.

Remarks. In genitalia, *Gelophaula* is similar to the Afrotropical *Hectaphelia* RAZOWSKI from which it differs chiefly by a lack of the dorsoterminal lobe of the costal sclerite of the valva. Also see *Ctenopseustis* MEYRICK for a comparison by DUGDALE (1990).

Geogepa RAZOWSKI 1977

Diagnoses. In the original description, *Geogepa* was compared to *Gnorismoneura* ISSIKI & STRINGER and *Epagoge* HÜBNER; all share a similar transtilla, valva, and signum. The supposed autapomorphies for *Geogepa* are the distally curved coecum penis and the swollen broadening of the median part of ductus bursae.
Gephyraspis DIAKONOFF, 1960

Diagnosis. *Gephyraspis* was originally compared to *Parapandemis* [= *Pandemis* HÜBNER] with the following note: “considerably [distinct] by the median rising process of the transtilla. Perhaps allied with *Homonoides*, in which a similar process is paired and lateral.”

Remarks. RAZOWSKI (2004) supposed that the presence of the median slender process of transtilla is the autapomorphy for this genus and also mentioned its other characters, e.g., the shape of the valva complex, which is found in other Archipini genera.

Glyphpidoptera TURNER, 1916

Diagnosis. In the original diagnosis TURNER wrote “A development of *Capua* differing in the strongly notched forewings…“ etc.

Remarks. I examined only *G. insignata* MEYRICK, 1881 from New South Wales which strongly resembles *Thrinocophora MEYRICK* (see comments under *Acropolitis*).

Gnorismoneura ISSIKI & STRINGER, 1932

Gnorismoneura ISSIKI & STRINGER, 1932, Stylus, 1(6): 134; 1. sp.: *Gnorismoneura exilis* ISSIKI & STRINGER, 1932, Taiwan, monotypic. Twenty-five species included. **PAL, OR.**

Diagnosis. According to the original description *Gnorismoneura* is allied to *Leontochroma* WALSINGHAM from which “it differs in the separation of veins 6 and 7 in the hind-wings, in the absence of the fringe of scales on vein 1b, and in the genitalia.”

Remarks. No autapomorphy was found (RAZOWSKI 1987). *Gnorismoneura* is also mentioned with *Aneuxanthis, Egoepea, Geogepa* and *Leontochroma*.

Gongylotyta DIAKONOFF, 1983

Diagnosis. DIAKONOFF diagnosed *Gongylotyta*, mentioning only (except for the statement that “but with so peculiar genitalia, that the separation in a new genus is necessary”) “the coremata and the dense hairing of the valva are rather similar to *Snodgrassia* DIAKONOFF, but this similarity is purely incidental, for the male genitalia is proper and very characteristic.”

Goniornata MEYRICK, 1933

Goniornata MEYRICK. 1933, Exotic Mikrolepid., 4: 423; 1. sp.: *Goniornata chersops* MEYRICK, 1933, Madagascar. Thirty-three species included. **AFR.**

Diagnoses and remarks of Archipini, Tortricidae

Diagnosis. Meyrick (1933) provided no comparative diagnosis. For a provisional diagnosis see the remarks below.

Remarks. Iakonoff (1960) divided Goniotorna into four subgenera. He concluded that it is characterized by a large tornal lobe of the male hindwing, which according to him independently developed several times within this family and “therefore it is of little use as a generic character.”

There is only one genital character in common to the majority of the species which may characterize Goniotorna: the anterior part of pedunculus is strongly narrowed whilst its main part is very broad. However, this character may be a synapomorphy for Goniotorna, Digitosa, and its allies. Goniotorna is also mentioned under Epichoristodes.

Harmologa Meyrick, 1882

Redescription. Philpott (1928), Iakonoff (1939).

Diagnosis. In his description of Harmologa, Meyrick (1882) wrote “Characters of Proselena, but with costal fold, from Cacoecia; antennae in male ciliated.” According to Iakonoff (1939) it is “closely allied to Homona and Cacoecia and not to Cnephasia and Tortrix as was supposed by Meyrick.” Iakonoff (1952) mentioned that “Structurally Anisotenes is almost congruent with Harmologa”. The original diagnosis of Trachybathra states “Allied to Capua from which it differs by the rough basal scales of forewings, and the absence of vein 4 of hindwings.”

Remarks. The type species is characterized by a well developed costa of the valva similar to that in some genera closely related to Epagoge Hübner, but Harmologa has a large uncus, a lobate arm of the gnathos, and a long, slender median part of transtilla; the female has a broad sterigma with protruding proximal corners, a strong median sclerite of ductus bursae, and a minute, non-capitate signum. Harmologa is also mentioned under Epiphyas, Homona, Isotenes, Paradichelia, Philocryptica, and Planostocha.

Hectaphelia Razowski, 2006

Diagnosis. Hectaphelia is closely related to Aphelia Hübner based on the similar shapes of the valvae and transtilla, and a tendency of formation of basal sclerites of the transtilla; however, Hectaphelia has a subdorsal sclerite of the valva and a plicate lobe of the gnathos.

Heterochorista Iakonoff, 1952

Hiceteria DIAKONOFF, 1953

Diagnosis. According to the original diagnosis, Hiceteria is “intermediate between Pyrgotis MEYRICK and Catamacta MEYRICK, nearest to the first named, distinct by absence of costal fold in male, and not crested but slightly crested thorax”; from Aeolostoma [in fact belonging to Epitymbiiin] “it can be discriminated by subascending palpus in male and by vein 2 in fore wing originating distinctly before middle of lower edge of cell...” also closely allied to the following genus [Carphomigma] but differing by the shape of palpi,... and absence of well developed double thoracic crest.”

Remarks. DIAKONOFF (1953) wrote that Nikolaia is “structurally nearest to Enoditis MEYRICK...[Sparganothini]” and “judging by the male genitalia closely correlated with Lophophrora MEYRICK [Polyorthini], and, less closely, with Carphomigma gen. nov.”

Remarks. HORAK (1984) provided a diagnosis but did not specifically compared Heterochorista to any other genus. She also redescribed Heterochorista and transferred it to Sparganothini. Heterochorista was described from a single female and Nikolaia from a male. The male genitalia of this genus show some sparganothine characters, but the females have a typical archipine signum with a well developed capitulum; thus DIAKONOFF correctly described it in Archipini.
Remarks. Homona is certainly a polyphyletic genus and requires further molecular study. Dombroskie & Sperling (2013) examined two species closely related to the type-species and placed them as a sister taxon of Psycholomoides + Psycholoma. Four other species morphologically rather remote from the type-species of the genus but closer to North American group named Archips FREEMEN (=Archips), were placed in the Archips group. Rhapsoidea was described in Xyloryctidae.

Homonoides DIKONOFF, 1960

Diagnosis. *Homonoides* was originally described as a “very distinct genus ... related with Parapandemis and also has affinities to the large Clepsis group, but stands otherwise rather isolated.”

Remarks. RAZOWSKI (2004) commented that the lateral processes of the transtilla are certainly of autapomorphic importance; other characters are widely distributed in this group of Archipini. *Homonoides* rather belongs in the group of Pandemis in which the median part of transtilla is preserved.

Homonopsis KUZNETZOV, 1964

Diagnosis. The genus was originally compared to *Homona* and *Anisogona* [Epitymbini], indicating that the two are similar in venation and genitalia, but differ in venation, valva and uncus, and the absence of socii.

Remarks. RAZOWSKI (1987) supposed that the shapes of the uncus and transtilla and the presence of the spined part of the inner surface of valva are putative autapomorphies for *Homonopsis*.

Idolatteria WALSINGHAM, 1914

Redescription. OBRAZTOV (1966).

Diagnosis. WALSINGHAM (1914) originally compared this genus with *Atteria* WALKER, 1863, Atteriini “in having F[ore]W[ing]:7-8 separate, not stalked; and from *Pseudatteria* WLSM. [Polyorthini] in FW 7 going to the termen ...” OBRAZTOV (1966) compared it with *Argyrotaenia* STEPHENS, stating “very distinct appearance, similar wing venation and very similar genitalia...”

Remarks. Apart from its telochromatic appearance, *Idolatteria* differs from *Argyrotaenia* and some other genera in the shape of the valva, the valval fold, and scent scales grouped dorsobasally; *Idolatteria* is also separated from *Argyrotaenia* by the absence of the basal sclerite of duc tus bursae.

Isochorista MEYRICK, 1881

Redescription. DIKONOFF (1939).
Diagnosis. In the original paper, *Isochorista* is compared to *Proselena* MEYRICK; it has different venation (forewing veins 7 and 8 are stalked) and males have a costal fold. MEYRICK (1881) stated *Isochorista* "resemble smaller species of *Capua* and *Dichelia.*" DIAKONOFF (1939) wrote that MEYRICK characterized it as a probable derivation of *Epagoge*.

Remarks. Affinities of *Isochorista* are still unclear; it has some characters similar to the group of genera related to *Epagoge* HÜBNER, [1825] (e.g., the male of *E. grotiana* FABRICIUS, 1781; the female to *Paramesia diffusana* KENNEL, 1899). The type species of *Isochorista* has a weak costa of the valva and a strongly spinose dorsum of the transtilla, and the female has a very long ductus bursae, and a small sterigma and signum.

Isodemis DIAKONOFF, 1952

Diagnosis. DIAKONOFF (1952) provided no comparative diagnosis, but wrote that the type species "and *Syndemis montivola* DIAKONOFF, 1941 form a natural unit characterized by the facies...

Remarks. *Isodemis* belongs to the advanced Archipini characterized by a reduced costa of the valva. The males have a large uncus, small pending socii, and a small transtilla. The valva is almost entirely membranous and has a large, plicate fold of the disc and a well defined sacculus. Females have a broad sterigma, a short antrum, a broad ductus bursae provided with sclerites, and strong, capitate signum.

Isotenes MEYRICK, 1938

Redescription. DIAKONOFF (1939).

Diagnosis. MEYRICK (1938) compared *Isotenes* to *Schoenotenenes* MEYRICK [Schoenotenennini]. DIAKONOFF (1939) realized that *Isotenes* is "closely related to Leptochroptila and Chresmarcha. Piliscophora* was characterized originally as "a link between the present [Chresmarchidii] and the following [Cacoecidii = Archipini] subfamily, superficially reminding *Harmologa*. According to the genitalia *Isotenes* is closely related to *Chresmarcha holantha* MEYRICK."

According to DIAKONOFF (1952), *Isotenes* is closely related to *Anisotenes* DIAKONOFF, but *Anisotenes* does not posses corethrogynne and was placed by DIAKONOFF in Cacoecini and not in his Zacoriscini. Other differences are rather slight. On the other hand, the genitalia of the two genera are similar.

According to the original description, *Isotenes* differs from *Chionothremma* by having a "rough scaled forewing, often ciliated costa, rough [labial] palpus, modest colouring and dorsal corethrogynne."

Remarks. *Piliscophora*, erected on the basis of the presence of a "large frontal tuft", was subsequently synonymized by DIAKONOFF (1952). The interpretation of the differing characters of *Isodemis* and *Anisodemis* requires a further study.
Jozefrazowskia KOÇAK & KEMAL, 2008

Diagnosis. In the original description, RAZOWSKI (2006) mentioned that Worcesteria is similar to Metamesia, but in Worcesteria the costa of the valva and the transtilla are well developed.

Kanikehia RAZOWSKI, 2013

Diagnosis. RAZOWSKI (2013) mentioned that the male genitalia of Kanikehia are somewhat similar to those of Dicanticinta YASUDA & RAZOWSKI, but those of Kanikehia differ from the latter in having a simple transtilla, a strong aedeagus, and broad uncus; the two also differ in venation (forewing veins R4-R5 and M3-CuA1 are stalked in Kanikehia).

Remarks. Kanikehia is also mentioned under Dicanticinta.

Labidoso DIAKONOFF, 1960

Diagnosis. DIAKONOFF (1960) supposed that Labidoso is “a considerably specialized off-shoot of the Homona stock”.

Remarks. Labidoso certainly belongs to the advanced Archipini with an atrophied costa of valva, but it is not related to Homona which is distributed chiefly in the Oriental and Australian regions.

Leontochroma WALSINGHAM, 1900

Leontochroma WALSINGHAM, 1900, Ann. Mag. nat. Hist., (7)5: 466; 1. sp.: Leontochroma aurantiacum WALSINGHAM, 1900, Sikkim, India; four species known. PAL, OR.

Diagnosis. DIAKONOFF (1939) wrote that Leontochroma is “allied to Homona and Cacoecia [= Archips],... and correlated with Homona.” OBRAZTSOV (1954) mentioned that the genus connects Homona WALKER and Philedone HÜBNER. DIAKONOFF (1976) wrote “As to the systematic position of Leontochroma WALS., together with Mochlopyga DIAK. [synonym of Clepiss GUENÉE] it forms a small natural group within the Archipini, characterized by the strongly sclerotic, large and spherical male genitalia.”

Remarks. RAZOWSKI (1987) could not identify any autapomorphy for Leontochroma. Leontochroma is also mentioned under Gnorismoneura ISSIKI & STRINGER.

Leptochroptila DIAKONOFF, 1939

Redescriptions. DIAKONOFF (1939).

Diagnosis. DIAKONOFF (1939) wrote that this genus is “related to Chresmarchidii and approaches Ceracini by the venation; it approaches Cacoecia [= Archips] by the neuoration, but shows a considerably advanced specialisation.”
Remarks. Judging from the original illustration, *Leptohroptila* is related to *Clepsis* GUENÉE. The female is unknown.

Leucotenes DUGDALE, 1990

Diagnosis. In the original description DUGDALE (1990) wrote “*Leucotenes* is distinguished from *Planotortrix* by the lack of strongly-scaled axillary cord and spatulate tufts, the reduced socii, the spear-like aedeagus apex, and the form of the cestum. From *Ctenopseustis* (which it resembles in colour pattern and facies) *Leucotenes* is distinguished by the absence of a hindwing cubital pecten and the forewing costal fold, the reduced socii, lack of spines on aedeagus apex, one or more stout cornuti, rather than several fine cornuti, lack of basal lobe on the vesica, the reduced signum, the straight cestum invagination, and cestum extending to four-fifths ductus bursae length. The combination of facies, colour pattern and aedeagus shape suggest a relationship with *Ctenopseustis*.”

Lozotaenia STEPHENS, 1829

Diagnosis. According to OBRAZTsov (1954), *Lozotaenia* is rather closely related to *Syndemis* HÜBNER, differing from it in the venation, serrate basal parts of transtilla, and lack of a ‘lamella postvaginalis.’ RAZOWSKI (1987) compared *Lozotaenia* with *Aphelia* HÜBNER as the two genera share a similar shape of the sacculus, the sclerite of the disc of the valva fused with base of the transtilla, and a similar shape of the transtilla.

Remarks. RAZOWSKI (1987) did not find any autapomorphy for *Lozotaenia*; the shapes of some parts of male genitalia are shared with *Aphelia* HÜBNER and some other genera.

Lozotaeniodes OBRAZTsov, 1954

Diagnosis. OBRAZTsov (1954) wrote that in facies *Lozotaeniodes* is close to *Lozotaenia* but differs from it by “venation, palpi and structure of genitalia....and more strongly so from *Eulia*...” RAZOWSKI (1987) wrote that *Lozotaeniodes* is closely related to *Clepsis* GUENÉE and the supposed autapomorphy for *Lozotaeniodes* is the presence of the ventral convexity of the aedeagus with its ventral invagination.

Lumaria DIKONOFF, 1976

Diagnosis. Originally, this genus was compared to the *Epagoge* group of genera and distinguished by the shape of the dentate sacculus (this character has not yet been found in any other genus).
Remarks. RAZOWSKI (2004) found no autapomorphy for Lumaria and realized that all differing characters could be found in other Archipini. The genus needs revision and re-evaluation.

Mantua ZIMMERMAN, 1978

Diagnosis. According to ZIMMERMAN (1978) Mantua externally resembles Panaphelix but has distinctive genitalia.

Remarks. Based on the figure by ZIMMERMAN, Mantua is characterized by a broad uncus the distal part of which extends into a pair of lateral lobes; a well developed gnathos; small, hairy socii; an atrophied costa of the valva; and the constricted median part of the transtilla. The female is distinct by the strongly sclerotized proximal processes of the sterigma.

Megalomacha DIAKONOFF, 1960

Diagnosis. DIAKONOFF (1960) mentioned that Megalomacha is “of uncertain affinity” and that it “may be confound with Archips...”

Remarks. The genus is known only from a female.

Meridemis DIAKONOFF, 1976

Diagnosis. Meridemis was originally compared to *Epagoge* HÜBNER and *Homona* WALKER. DIAKONOFF (1976) wrote “the male genitalia are remarkably close to those in Homona WALKER, except for a much slender built corresponding with these small insects.”

Remarks. According to RAZOWSKI (1987), the characters mentioned by DIAKONOFF are of convergent importance and that the connection of the uncus to the dorsum of the tegumen is very similar to that in Choristoneura LEDERER.

Mesocalyptis DIAKONOFF, 1953

Diagnosis. The original diagnosis is as follows: “Closely allied to Tremophora gen. n. but without any trace of abdominal organs. Superficially approaches Arizelana gen. n., but without costal fold and with slender palpi; also approaches Procalyptis MEYRICK (both genera in the tribe Cacoecini) but with longer palpi, without costal fold in fore wing, and with 6 and 7 stalked in hind wing. Forms together with the preceding genus [Tremophora] and with Taeniarchis MEYRICK a natural group with the genitalia of a very similar type.”
Mersa RAZOWSKI, 2013

Diagnosis. RAZOWSKI wrote “In facies, Mersa is similar to species of Williella HORAK, 1985, but Mersa has a broader uncus, a minute socius, a bifid transtilla, and a very strong gnathos. From Choanograptis MEYRICK, 1938 the new genus differs chiefly in its simple or scobinate arm of gnathos and its bifurcate median part of transtilla.”

Metamesia DIAKONOFF, 1960

Diagnosis. In the original description DIAKONOFF (1960) wrote that male genitalia of Metamesia “suggest some connection with Ptycholoma...and the species have the general appearance of Capua.”

Remarks. According to RAZOWSKI (2004), the shapes of the uncus, transtilla and aedeagus are reminiscent of those in the Clepsis group of genera; its transtilla is very similar to that of Neocalyptis, and the subgenital sternite and the female genitalia are also similar to the latter.

Mictoneura MEYRICK, 1881
Mictoneura MEYRICK, 1881, Proc. Linn. Soc. N. S. W., 6: 419; Mictoneura flexanimana MEYRICK, 1881, Australia: New South Wales. Monotypic. AU.

Diagnosis. In the original description MEYRICK (1881) wrote that Mictoneura is perhaps nearest to the group of which Dichelopa is the type. DIAKONOFF (1939) and COMMON (1963) compared this genus with Parastranga based on the venation (forewing R3-R4 stalked) and mentioned “that the genitalia in both sexes of Mictoneura are diagnostic.”

Mitocommosis DIAKONOFF, 1977

Diagnosis. DIAKONOFF (1977) provided no comparative diagnosis. DIAKONOFF (1986) wrote “The present genus is allied with Thaumatographa [WALSINGHAM, 1897, Hilarographini] judging from many features.” RAZOWSKI (2009) wrote that Mitocommosis is closely related to Mictopschia HÜBNER as the presence of the submedian belt of disc of valva, the shape of gnathos and aedeagus show.”

Remarks. Mitocommosis was described in Glyphipterigidae. It is also mentioned under Mictopschia.

Mictopschia HÜBNER, [1825] 1816
Mictopschia HÜBNER, [1825] 1816, Verz. bekannter Schmett.: 374; 1. sp.: Phalaena Torrix hubneriana STOLL, 1787, Surinam. Twenty-four species included. NEO.

Mictopschia AGASSIZ, 1848; Micropsychia AGASSIZ, 1848; Micropsychia RILEY, 1889; Micropsychia HEPPNER, 1978 — misspellings of Mictopschia.

Diagnoses and remarks of Archipini, Tortricidae

Diagnoses. RAZOWSKI (2009) wrote that Mictocommosis "is closely related to Mictopsichia as the presence of the submedian belt of disc of valva, the shape of gnathos and aedeagus show."

Remarks. RAZOWSKI (2009) included in this group Mictocommosis DIAKONOFF, Chamaepsichia RAZOWSKI and Rubropsichia RAZOWSKI, and placed them in Archipini. Mictopsichia is also mentioned under Mictocommosis.

Midaellobes VIETTE, 1990

Midaellobes VIETTE, 1990, Faune Madagascar, Suppl.1: 23, replacement name for Midaellobes. AFR.

Diagnoses. DIAKONOFF (1960) wrote "A specialized form of uncertain affinity. The lamina dentata type of the signum indicates the Cnephasiinae character of the species. Perhaps allied with Vialonga gen. n."

Remarks. Described in Cnephasiini, Midaellobes was transferred to Archipini by RAZOWSKI (2004), who stated that it is characterized by an apomorphic, strongly spined sacculus, a vinculum with broad lateral lobes as in Archips HUBNER and related genera; and a transtilla with broad, lateral, spiny plates connected by a median rod. The female was not illustrated, but according to the original description it has a long, coiled ductus bursae with a cestum, lacks a specialized signum, and the corpus bursae is provided with "a pair of parallel streaks of fine aciculae and a pair of small groups of aciculae."

Minutargyrotoza YASUDA & RAZOWSKI, 1991

Minutargyrotoza YASUDA & RAZOWSKI, 1991, Nota lepid., 14(2): 188; 1 sp.; Capua minuta WALSINGHAM, 1900, Japan. Two species known. PAL.

Diagnoses. No original comparative diagnosis was provided. Minutargyrotoza is similar to Drachmobola MEYRICK, but Minutargyrotoza has a simple, basally broadening transtilla and proximal (apical) opening for the ductus ejaculatorius, and lacks an accessory bursa.

Neocalyptis DIAKONOFF, 1941

Neocalyptis DIAKONOFF, 1941, Treubia, 18: 407; 1 sp.: Neocalyptis telutanda DIAKONOFF, 1941, Java. About 20 species included. PAL, OR.

Diagnoses. DIAKONOFF (1953) wrote that "the genus is intermediate between Epagogete HUBNER and Syndemis HUBNER and possibly is also related to Procalyptis MEYRICK. Structurally it approaches Cnephasia CURTIS, but can be separated by rather short palpi, and stalked veins 3 and 4 in hind wing." RAZOWSKI (1987) compared Neocalyptis to Diplocalyptis and recognized three synapomorphies for the two: the presence of a large, membraneous sack-shaped outer wall of the valva strengthened by a small rod-like sclerite which extends from base of sacculus; the shape of labis (transtilla); and the structure of the ventral portion of the vinculum. Further similarities are mentioned by RAZOWSKI (2005)
J. Razowski

who compared Neocalyptis to Aphelia and Archips. YASUDA (1972) described Calala as a subgenus of Argyrotaenia, differing from it by venation and the absence of forewing costal fold in the male.

Neocalyptis is also mentioned under Diplocalyptis, Notiocalyptis, Paramesia, and Spheterista.

Niphothixa DIAKONOFF, 1960

Diagnosis. This genus was originally compared with Parapandemis [Pandemis]; Diakonoff (1960) commented “with a distinct affinity towards Borboniella from Reunion.”

Remarks. No autapomorphy was mentioned. *Niphothixa* is closely related to Pandemis HÜBNER from which it differs slightly in the venation, which is variable. Additional remarks are given by Razowski (2004). *Niphothixa* may prove a synonym of Pandemis.

Nkandla RAZOWSKI & BROWN, 2009

Diagnosis. Originally, this genus was compared to Drocta RAZOWSKI, 2006 and Worcesteria RAZOWSKI, 2006 (= Jozefrazowskia); *Nkandla* can be distinguished from them by having a small, subtriangular, weakly sclerotized uncus, which in *Drocta* has a large semicircular excavation distally and that of *Jozefrazowskia* is broadly rectangular. Putative autapomorphies for *Nkandla* include the slender submedian socii and the very large process of the postmedian part of the valva.

Notiocalyptis DIAKONOFF, 1983

Diagnosis. In his original description DIAKONOFF wrote “A rather puzzling form, apparently nearest allied to the Holarctic Clepsis GUENÉE, but the male genitalia are too different for allowing inclusion in that genus.”

Remarks. In genitalia, *Notiocalyptis* is very similar to Neocalyptis DIAKONOFF, but the lateral lobes of the transtilla of Neocalyptis are broad, not extending proximally, and the socii are vestigial.

Ochetarcha MEYRICK, 1924

Diagnosis. In the original diagnosis MEYRICK commented “Hence the species cannot be referred to Olinia [Polyorthini], and requires a new genus.”

Ochrotaenia RAZOWSKI & BECKER, 2000

Ochrotaenia RAZOWSKI & BECKER, 2000a, Acta zool. cracov., 43(3-4): 204; 1 sp.: *Ochrotaenia flexa* RAZOWSKI & BECKER, 2000, Brazil: Minas Gerais. Monotypic. NEO.
Diagnoses. Ochrotaenia was compared to Argyrotaenia Stephens; the two share similar shapes of the transtilla, acedeagus, and antrum. The supposed autaomorphies for Ochrotaenia are the shapes of the gnathos and sacculus.

Orilesa RAZOWSKI, 2006

Orilesa RAZOWSKI, 2006, Polish J. Entomol., 75(3): 421; t. sp.: Crephasia olearis MEYRICK, 1912, RSA: Transvaal. Six species included. AFR.

Diagnosis. Orilesa was originally compared to Clepsis GUENÉE and Metamesia DIAKONOFF. Orilesa is distinguished by a band-shaped transtilla accompanied by a basal process of the costa of valva; whereas in the two other genera there are distinct labides, occasionally connected by a slender band. Orilesa also differs from Clepsis and Metamesia by the following supposed autapomorphies: the presence of large lobes of the subterminal part of the gnathos, the long terminal plate of the gnathos, and a small sclerite at base of the transtilla.

Panaphelix WALSINGHAM, 1907

Panaphelix WALSINGHAM, 1907 [in SHARP], Fauna Hawaiensis or Zool. Sandwich (Hawaiian) Isles, 1(5): 695, t. sp.: Panaphelix marmorata WALSINGHAM, 1907, Hawaiian Island, monotypic. Two species included. AU.

Redescription. ZIMMERMANN (1978).

Diagnosis. ZIMMERMANN considered Panaphelix to be closely related to Mantua ZIMMERMANN and mentioned that it "resembles the complex of genera which includes Pandemis HÜBNER, 1825; Parapandemis OBRAZTSOV, 1954; and Borboniella DIAKONOFF, 1957, and associates, as well as some Archips...but it may be a development of Holarctic Archips."

Remarks. Panaphelix is a distinct, endemic Hawaiian genus not closely related to Archips HÜBNER. It is characterized by the bipectinate male antenna; broad, medially expanding transtilla; reduced colliculum (without a proximal sack); simple ductus bursae.

Pandemis HÜBNER, [1825] 1816

Pandemia STEPHENS, 1834; Pandennis MOFFAT, 1886 – incorrect subs. spell. of Pandemis HÜBNER.

Diagnosis. DIAKONOFF (1939) characterized Pandemis as "a peculiar genus closely related to Cacoecia, probably an off-spring of the Tortrix – Peronea [=Acleris] group [Tortricini]."

Remarks. In the original description Parapandemis was compared to Pandemis HÜBNER, but Parapandemis has a simple [plesiomorphic] pedicillus of the antenna. Other characters provided are of convergent importance, hence Parapandemis was regarded as a
subgenus of Pandemis by KUZNETSOV (1978) and synonymized with it by RAZOWSKI (1987).

According to RAZOWSKI (1987) the putative autapomorphies for Pandemis are the presence of the male scent organs veloped in basal and distal parts of abdomen and the notched pedicellus of antenna in males, the structures of transtilla, the termination of gnathos, and scobinate areas (usually sclerotized) of corpus bursae.

Some remarks are by RAZOWSKI (1978b, 2004).

Archepandemis was synonymized with Pandemis on basis of molecular and morphological data by DOMBROSKIE & SPERLING (2013).

Mentioned also under: Panaphelix, Peteliaema, Viettea and Xenophylla.

Paradichelia DIAKONOFF, 1952

Diagnosis. Original comparative diagnosis: “Nearest to Harmologa MEYRICK, 1882 described from New Zealand, differing by... the much shorter uncus which is dilated at the base (in Harmologa the uncus is shaped as a long hook, with dilated top); the smaller socii, the differently shaped transtilla, and the plictae valva (in Harmologa the valva is simple, without any folds in the disc); the female genitalia have a more complicated ostium than in Harmologa, a longer colliculum, and a quite different cestum while in the latter genus the long signum is supported by sclerotized ribs of the wall of the bursa copulatrix.”

Remarks. The male genitalia illustrated by DIAKONOFF (1952, 1953) are similar to those of Clepsis; all are characterized by a well-developed, terminally spined labis, a broad round uncus, small or vestigial socii, and other characters often occurring in Palaearctic species of Clepsis. Not re-examined by me.

Paramesia STEPHENS, 1829

Paramesia STEPHENS, 1829, Nom. Br. Insecta: 48; 1 sp.: Phalaena gnoma Clarke, 1759, Europe. Four species included. PAL.

Paramesia RAZOWSKI, 1981, Monogr. Fauny Polski, 10: 208; 1 sp.: Phalaena gnoma Clarke, 1759. AU.

Remarks. RAZOWSKI (1981) synonymized Paramesia with Phalaena and compared it to Neocalyptis, but he also found some similarities to Clepsis GUENÉE and other genera, but those similarities seem very superficial.

Paramesia is also mentioned under Paramesiodes, Paraphasis, Periclepsis, and Pyrgotis.

Paramesiodes DIAKONOFF, 1960

Diagnosis. In the original diagnosis, DIAKONOFF mentioned that Paramesiodes is “intermediate between Epagoge HÜBNER and Paramesia STEPHENS but closer to the later.”
Remarks. RAZOWSKI (2004) mentioned that it differs slightly from other genera of this group (e.g., Anthophrys, Cosmophrys). The shape of the valva of Paramesiodes is somewhat similar to that in Epagoge, but the anterior third of the costa is preserved and the transtilla is quite different, fully developed. In Paramesia the costa of the valva is fully developed, whilst the uncus and transtilla are somewhat similar to Paramesiodes. Paramesiodes is also mentioned under Xenophylla.

Paraneisia TURNER, 1916

Diagnosis. In the original description TURNER (1916) wrote “Differs from Epichorista only by the raised scales on forewings, but really belongs to the Peronea group.”

Remarks. COMMON (1963) retained in Paraneisia only the type species as the other earlier included species, *P. phaulopa* TURNER, 1916 is not closely related to it.

Paraphasis WALSINGHAM, 1907

Paraphasis WALSINGHAM, 1907 [in SHARP], Fauna Hawaiensis or Zool. Sandwich (Hawaiian) Isles, I(5): 730; 1 sp.: *Paraphasis perkinsi* WALSINGHAM, 1907, Hawaiian Islands. Monotypic. AU.

Redescription. ZIMMERMAN (1978).

Diagnosis. *Paraphasis* is comparable to some archipine genera with a well developed costa of the valva, especially to the Palaearctic Paramesia STEPHENS. However, *Paraphasis* has a band-shaped, dorsally thorny transtilla, bipectinate male antenna, and hindwing veins Rs and M1 distinctly separate from each another.

Remarks. *Paraphasis* was described in Tineidae from a single male.

Paraphyas TURNER, 1927

Diagnosis. The original diagnosis states “Directly developed from Capua, from which it differs in the very long palpi, and stalking of 9 of forewings.” COMMON (1963) provided no comparative diagnosis, but from his illustrations one can see that *Paraphyas* resembles *Symphygas* but differs from it in its slender vinculum, simple gnathos (without any processes), weaker transtilla, and paired signum.

Paraphyas is also mentioned in the diagnosis of *Symphygas* COMMON.

Pararrhaptica WALSINGHAM, 1907

Pararrhaptica WALSINGHAM [in SHARP], 1907, Fauna Hawaiensis or Zool. Sandwich (Hawaiian) Isles, I(5): 689; 1 sp.: *Pararrhaptica perkinsana* WALSINGHAM, 1907, monotypic, Hawaiian Islands. Nineteen species described. AU.

Diagnosis. ZIMMERMAN (1978) compared *Pararrhaptica* superficially with *Epiphyas* TURNER and *Spheterista* MEYRICK but realized that its valvae are “unusual.”

Remarks. In genitalia, *Pararrhaptica* somewhat resembles the Afrotropical *Procrica* DIAKONOFF, especially in the shapes of valva and signum (if present), but *Parar-
rhaptica has the ‘lateral part of the transilla’ (=labis) developed in the form of minutely
thorny plates, the uncus is large and broad, and the socii are ill-defined.

Parastranga MEYRICK, 1910

Diagnosis. According to COMMON (1963), this genus is closely related to *Peraglyphis* “differing from that genus by the stalking of veins R3 and R4 of the forewing and by the genitalia. The gnathos ... is very similar to that in some species of *Peraglyphis* although the elbowing of the gnathos arms is even more accentuated. However, the uncus is simple, not bifurcate as in *Peraglyphis.***

Parastranga is also mentioned in the diagnosis of *Symphygas* COMMON.

Peraglyphis COMMON, 1963

Diagnosis. In the original description, *Peraglyphis* is included in Cnephasiini and compared with *Arotrphora* MEYRICK, as “apparently derived from” it. It was characterized by the loss of the M-stem and specialized genitalia especially the bifurcate uncus, the heavily sclerotized and variously modified gnathos, and a partial sclerotization and ornamentation of the sacculus in some species.

Peraglyphis is mentioned in the diagnosis of *Symphygas* COMMON and under *Parastranga*, *Pteridoporthis*, and *Symphygas*.

Periclepsis BRADLEY, 1977

Periclepsis BRADLEY, 1977, Entomologist’s Gaz., 28: 84, replacement name for *Paraclepsis.***

Diagnosis. OBRAZTSOV (1954) wrote that *Paraclepsis* differs from *Clepsis* GUENÉE by venation, labis, and signum.

Remarks. RAZOWSKI (1987) realized that the sack-shaped basal lobes of the transtilla are the putative autapomorphies for *Periclepsis*. *Periclepsis* belongs to the group of genera with a well developed costa of valva, e.g., *Paramesia STEPHENS. Periclepsis* is also mentioned under *Abreapagoge.*

Peteliacma MEYRICK, 1912

*Peteliacma MEYRICK, 1912, Exotic Microlepid., 1: 12; 1 sp.: Peteliacma torrescens MEYRICK. 1912, Madagascar. Monotypic: AFR.

Diagnosis. MEYRICK (1912) provided no comparative diagnosis. DIAKONOFF (1960) placed *Peteliacma* in Cnephasiini. RAZOWSKI (2004) stated that *Peteliacma* belongs to Archipini as the shapes of the uncus, transtilla and sterigma show. Putative autapomorphies of *Peteliacma* are the minutely bristled socius; the shape of the gnathos; and the large, dentate transtilla. The aedaeagus is different than in the genera close to *Pandemis*
HÜBNER, with a small, not angulate coecum penis; however, the venation is very characteristic. The systematic position of Peteliacma remains unclear.

Peteliacma is also mentioned under Balioxenia and Pandemis.

Petridia DIAKONOFF, 1983

Diagnosis. The original diagnosis states “The genus is structurally allied to Pa-
laearctic Choristoneura Lederer, but judging from the male genitalia, it seems to be
nearer to C. sorbiana HB. than to the type, C. diversana Hübner. A still closer relative
may be Electraglaia DIAKONOFF...; these discrepancies [are chiefly the] simple hook of
the gnathos and peculiar internal spikes of the aedeagus in the present genus.” According
to DIAKONOFF, this genus, may be separated from Electraglaia and the Clepsis group by
the absence of “armed labis and by a simple valva.”

Phaenacropista DIAKONOFF, 1941

Phaenacropista DIAKONOFF, 1941, Treubia, 18: 387; t. sp.: Schoenotines cremnotoma MEYRICK, 1936, Indonesia: Java. Two species included. OR.

Diagnosis. In the original description DIAKONOFF (1941) wrote “Correlated with
Adoxophyes MEYR., but with veins 7 and 8 in forewings separate, and with Cacoecia HB.,
but with vein 3 in forewings from before angle, and with palpi roughly scaled above. Position
of vein 8 in forewings and of vein 6 in hindwings of female is remarkable.”

Remarks. Judging from the illustrations (DIAKONOFF 1941, CLARKE 1958), S.
cremnotoma is similar to species of Adoxophyes MEYRICK (the male holotype lacks the
abdomen); the female genitalia resemble those of Archips HÜBNER but have no cestum.

Phalarotortrix RAZOWSKI, 2015

Diagnosis. The original comparative diagnosis is as follows: “Phalarotortrix is
most similar to Droceta Razowski, 2006, but the latter has an elaborate uncus consisting of
two broad, serrate lateral parts and a clasper-like median part; both genera lack a gnathos
and have strongly reduced socii and rod-like sclerites from disc of valva.”

Philedone HÜBNER, [1825]1816

Philedone Hübner, [1825]1816, Verz. bekannter Schmett.: 389; t. sp.: Tortrix gerningana [DENIS & SCHIFFERMÜLLER], 1775; Austria, Europe. Monotypic. PAL.

Diagnosis. OBRAZTsov (1954) wrote that Philedone is closely related to Hastula (= Avaria KOÇAK) and differs from it by the shape of the stalked forewing veins 1A+2A and the genitalia.

Remarks. RAZOWSKI (1987) concluded that the shape of the transtilla, aedeagus,
and colliculum are autapomorphies for Philedone. According to SWATSCHEK (1958),
the chaetotaxy of the larvae of Philedone and Philedonides is identical.

Philedone is also mentioned under Avaria, Leontochroma, Philedonides, and Tuckia.
Philedonides OBRAZTSOV, 1954

Diagnosis. *Philedonides* was originally compared to *Philedone* HÜBNER (identical wing venation) and to species of *Acleris* HÜBNER and *Clepsis* GUENÉE (similar facies).

Remarks. According to RAZOWSKI (1987), the shape of the terminal portion of the gnathos is a supposed autapomorphy for this genus.

Philedonides is also mentioned under *Capua*, *Philedone*, and *Pseudoelia*.

Philocryptica MEYRICK, 1923

Redescription. PHILPOTT (1928).

Diagnosis. MEYRICK (1923) provided no comparative diagnosis. PHILPOTT (1928) stated that “the genitalia are of the same type as *Harmologa*.”

Phlebozemia DIAGONOFF 1985

Diagnosis. DIAGONOFF (1985) originally compared *Phlebozemia* to *Epichoristodes*, stating that it differs from it by the following autapomorphies: “The loss of vein 4 in both the fore and hindwing, strongly sclerotic entire basal edge of the valva (with a crown-shaped, dentate labis), strongly sclerotic, in middle well dilated sacculus, and a short, semioval disc of valva...”

Remarks. *Phlebozemia* is probably a synonym of *Epichoristodes* DIAGONOFF and the characters mentioned above are of specific rather than generic importance. *Epichoristodes*, however, requires revision; hence, I refrain from sinking *Phlebozemia* into synonymy with *Epichoristodes*. Similar remarks are given by RAZOWSKI (2004).

Planostocha MEYRICK, 1912

Planostocha MEYRICK, 1912, Exotic Microlepid., 1: 13; 1 sp.: *Cacoecia cumulata* MEYRICK, 1907, India. Four species included. OR, AU.

Redescription. DIAGONOFF (1939).

Diagnosis. MEYRICK (1912) gave no comparative diagnosis. DIAGONOFF (1939) realized that *Planostocha* is “perhaps related to *Eboda*” [Tortricini] and that *Diadelomorpha* “is a relative of *Cacoecia*” (DIAGONOFF 1953).

Planostocha is also mentioned under *Choristoneura*.

Planotortrix DUGDALE, 1966

Diagnoses. Originally, Planotortrix was characterized as follows: “it differs from the superficially similar genera Harmologa MEYRICK, Ascerodes MEYRICK, Gelophaula MEYRICK and Epichorista MEYRICK in antennal, aedeagal, and sterigmal characters, and from Ctenopseustis MEYRICK it differs in the position of the aedeagal orifice and the absence of a cubital pecten. In the length of the uncal brush patches and the wing position in repose it resembles Catamacta MEYRICK, but Catamacta has R4 + R5 stalked.” An additional diagnosis is given by DUGDALE (1990).

Planotortrix is also mentioned under Asteriognatha, Ctenopseustis, and Leucotenes.

Platysemaphora DIAKONOFF, 1960

Diagnoses. DIAKONOFF (1960) mentioned that this genus “probably belongs in the vicinity of Epagoget group of genera. Known from female only. Until males will be discovered it is not possible to indicate closely its exact position”. DIAKONOFF (1960) also wrote that Platysemaphora is “distinct by the peculiar flattened signum,” but this character cannot be observed in the original illustrations.

Procalyptis MEYRICK, 1910

Procalyptis MEYRICK, 1910, Proc. Linn. Soc. N.S. Wales, 35: 204; 1. sp.: Procalyptis oncota MEYRICK, 1910, Western Australia. Three species included. AU.

Redescription. DIAKONOFF (1939).

Diagnoses. According to DIAKONOFF (1939), Procalyptis is “allied to Adoxophyes.”

Remarks. In male genitalia, Procalyptis is similar to Adoxophyes MEYRICK but has a continuous median part of the transtilla and broad, thorny, lateral parts.

Procalyptis is also mentioned under Procalyptis, Mesocalyptis, and Neocalyptis.

Procrica DIAKONOFF, 1960

Diagnoses. Procrica was described as “a natural group of closely allied species.” Although it was not compared with any other genus, DIAKONOFF (1960) placed it near Borboniella DIAKONOFF.

Remarks. RAZOWSKI (2004) realized that Procrica is close to Choristoneura and mentioned its probable autapomorphy – the shape of the valva, the dorsal edge of which is somewhat concave, and free of minute folds of the disc diagonally running from above base of sacculus to apex. For additional comments see RAZOWSKI (2008c).

Procrica is also mentioned under Pararhaptica.

Protoptera MEYRICK, 1908

Diagnoses. MEYRICK (1908) gave no diagnosis. DIAKONOFF (1939) characterized Protoptera as “correlated with Drachmobola MEYRICK.” YASUDA & RAZOWSKI (1991)
compared *Protopterna* to *Minutargyrotoza* YASUDA & RAZOWSKI, indicating that synapomorphies for the two genera, plus *Pternozyga* MEYRICK, are the presence of a funnel-like sclerite between the juxta and the valva and the shape of the sacculus.

Pseudargyrotoza OBRAZTSOV, 1954

Pseudargyrotoza OBRAZTSOV, 1954, Tidschr. Ent., 97(3): 228; 1 sp.: *Pyralis convagana* FABRICIUS, 1775, Europe; Great Britain. Monotypic. *PAL.*

Diagnosis. OBRAZTSOV (1954) indirectly compared *Pseudargyrotoza* to *Argyrotoza* STEPHENS, which is similar in facies to *Pseudargyrotoza* but belongs to Tortricini.

Remarks. RAZOWSKI (1987) mentioned the following autapomorphies for *Pseudargyrotoza*: the shape of the large median part of the transtilla and the position of the accessory bursa copulatrix.

Pseudargyrotoza is also mentioned with *Dicanticincta*.

Pseudeulia OBRAZTSOV, 1954

Diagnosis. There is no original comparative diagnosis.

Remarks. RAZOWSKI (1987) writes that the supposed autapomorphies for the genus are the shapes of the transtilla, aedeagus, and colliculum; however, the shape of the transtilla may be of a convergent importance, as may be the similar weakly sclerotized portion of valva and the very broad sclerite of its costal part.

SWATSCHEK (1958) stated that the chaetotaxy of *Philedonides* OBRAZTSOV does not differ from that of *Lozotaenia*. *Pseudeulia* is mentioned under *Philedonides*.

Pteridoporthis MEYRICK, 1937

Pteridoporthis MEYRICK, 1937, Exotic Microlepid., 5: 156; 1 sp.: *Pteridoporthis euryloxa* MEYRICK, 1937; one species known. Fiji. *AU.*

Diagnosis. In the original description MEYRICK (1937) mentioned only that *Pteridoporthis* is “allied to Capua”. The genitalia of *Pteridoporthis* are similar to *Peraglyphis* MEYRICK, but *Pteridoporthis* has a simple terminal part of the gnathos, a membranous dorsal part of the valva, a membranous transtilla, and no proximal sclerite of the ductus bursae. In addition, *Pteridoporthis* has stalked forewing veins R4-R5 and a subtelescopic ovipositor.

Pternozyga MEYRICK, 1908

Resdescription. DIAKONOFF (1939).

Diagnosis. There is no original comparative diagnosis. DIAKONOFF (1939) diagnosed *Pternozyga* as “closely related to *Prototerpa* MEYRICK, 1908”.

J. RAZOWSKI

238
Remarks. The female genitalia of *Pternozyga* and *Prototerpna* are very similar; the male of *Pternozyga* is unknown. However, the wing venation is different between the two. The inclusion of these genera in Archipini needs reconsideration.

Pternozyga is mentioned under *Protopterna*.

Psycholoma STEPHENS, 1829

Diagnosis. OBRAZTSOV (1954) mentioned only that this genus is close to *Adoxophyes, Clepsis, Ptycholoma* are also mentioned under *Anthophrys, Homona, and Metamesia*.

Psycholomoides OBRAZTSOV, 1954

Psycholomoides OBRAZTSOV, 1954, Tijdschr. Ent., 97(3): 186; 1. sp.: *Torrix aeriferana* HEERICH-SCHAEFFER, 1851, Europe; Germany. One species known. **PAL**.

Diagnosis. OBRAZTSOV (1954) originally compared *Psycholomoides* to *Choristoneura* Lederer; however, the characters in the description are mostly of little value in diagnosing the genus.

Remarks. According to RAZOWSKI (1987), the shape of the gnathos is the only putative autapomorphy for this genus.

Psycholomoides is mentioned under *Homona, Tosirips, and Viettea*.

Pyrgotis MEYRICK, 1881

Redescription. PHILPOTT (1928).

Diagnosis. MEYRICK (1881) wrote “Nearly allied to *Acropolitis*, but veins 6 and 7 of hindwings are always stalked, the costa of forewings is hardly bent in the male and apex is always more or less produced ...”

Remarks. The male genitalia of *Pyrgotis plagiatana* resemble those of the Palaearctic *Paramesia* STEPHENS, but *Pyrgotis* has large, slender lateral parts of the transtilla. The male genitalia also resemble those of *Sorensenata* SALMON & BRADLEY from the Campbell Island, but the latter has a broad median part of the transtilla.

Pyrgotis is also discussed under *Carphomigma, Choanographtis, Hiceteria, and Paramesia*.

Pyrsarcha MEYRICK, 1932

Pyrsarcha MEYRICK, 1932, Exotic Microlep. 4: 340; 1. sp.: *Pyrsarcha hypsicrates* MEYRICK, 1932, Kashmir. Monotypic. **OR**.

Redescriptions. DIKONOFF (1939), OBRAZTSOV (1954).

Diagnosis. MEYRICK (1932) mentioned only that *Pyrsarcha* is “allied to Batodes”. According to DIKONOFF (1939), *Pyrsarcha* is “probably correlated with *Epagoge*.”
Remarks. In male genitalia, *Pyrsarcha* differs from all genera of the *Epagoge*-group in having a broad, strongly sclerotized transtilla. The sclerotized part of dorsal portion of the valva is short, and the venation is specialized. The female genitalia are unknown. Based on the above characters, it is difficult to know the affinities of *Pyrsarcha*.

Rubropsichia RAZOWSKI, 2009

Diagnosis. *Rubropsichia* was originally compared to *Mictopsichia* HÜBNER and *Mictocommosis* DIAKONOFF. *Rubropsichia* is more advanced, having a membranous proximal part of valva, which resembles the basal cavity of olethreutines, and lacks the submedian belt. The gnathos is represented by weak lateral arms not connected medially. The transtilla in the two (*Chamaepsicia* and *Mictopsichia*) genera is similar (i.e., rod-like with large lateral lobes), and the signum is belt-shaped and transverse.

Rubropsichia is also mentioned under *Chamaepsicia* and *Mictopsichia*.

Sacaphelia RAZOWSKI, 1981

Diagnosis. In the original description, *Sacaphelia* was compared to *Zelotheres* and *Aphelia* s.str. *Sacaphelia* is distinguished chiefly by the large, thorny lobe at the junction of the transtilla and valve, but also by the tubular proximal part of the sterigma.

Remarks. DOMBROSKE and SPERLING (2013) elevated *Sacaphelia* to generic rank. *Sacaphelia* is also discussed under *Aphelia*.

Saetotaenia RAZOWSKI & BECKER, 2000

Saetotaenia RAZOWSKI & BECKER, 2000a, Acta zool. cracov., 43(3-4): 206; t. sp.: *Tortrix velitans* MEYRICK, 1923, Brazil. Monotypic. NEO.

Diagnosis. *Saetotaenia* originally was compared to *Argyrotaenia* STEPHENS from which it differs chiefly by its distinct, broad, setose distal half of the sacculus. Females of *Saetotaenia* differ from *Argyrotaenia* in having a long ductus bursae with a well developed cestum.

Scotiophyes DIAKONOFF, 1976

Diagnosis. In the original description DIAKONOFF wrote that *Scotiophyes* “is similar to *Adoxophyes* MEYRICK but has entire facies so different,... the costal fold is almost absent and the genitalia differ so markedly...”

Remarks. According to RAZOWSKI (1987), autapomorphies for *Scotiophyes* are the presence of a cup-shaped concavity on the outer surface of valva, a rod-like sclerite strengthening the pit-shaped structure of the basal portion of valva, the shape of the attachment of the transtilla, the fusion of the transtilla and juxta, the structure of the terminal plate of gnathos, and the shape of the socii.
Diagnoses and remarks of Archipini, Tortricidae

Snodgrassia DIAKONOFF, [1968] 1967

Diagnosis. DIAKONOFF (1968) indicated that *Snodgrassia* is similar to “some Adoxophyes species, but the neuration is quite different….the male genitalia, with a dilated and round valva and a peculiar gnathos.”

Remarks. Judging from the original illustration, the valva of *Snodgrassia* resembles that of *Argyrotaenia* STEPHENS but the labis is a slender, pointed rod.

Sorensenata SALMON & BRADLEY, 1956

Diagnosis. In the original diagnosis, the male genitalia of *Sorensenata* were compared to those of *Epagoge* HÜBNER.

Remarks. Based on the original illustration, *Sorensenata* has a well developed costa of the valva (like in *Paramesia* STEPHENS) and a strong dorsum of the transtilla.

Spheterista MEYRICK, 1912

Spheterista MEYRICK, 1912, Exotic Microlep., I: 2; 1. sp.: *Capua variabilis* WALL. SINGH BHAM, 1907 [in] SHARP, Hawaiian Islands: Molokai. Seventeen species are included (BROWN, 2005). AU.

Redescriptions. ZIMMERMANN (1978).

Diagnosis. No comparative diagnosis was given by MEYRICK (1912). ZIMMERMANN (1978) compared *Spheterista* to *Dichelopa*, *Clepsis*, *Adoxophyes*, but suggested that it is most close to the Palaearctic *Epagoge* HÜBNER.

Remarks. Judging from the illustrations by ZIMMERMANN (1978), *Spheterista* is related to *Neocalyptis* DIAKONOFF, but *Spheterista* can be distinguished by an elongate distal part of the valve and a simple colliculum, and it lacks a signum like *Dichelopa* LOWER. A few species have a bifid uncus similar to *Diplocalyptis* DIAKONOFF.

Spheterista is mentioned under *Adoxophyes*, *Neocalyptis*, and *Pararrhaptica*.

Spinotaenia RAZOWSKI & BECKER, 2000

Diagnosis. *Spinotaenia* was compared to *Argyrotaenia* STEPHENS; *Spinotaenia* is characterized by the following putative autapomorphies: the presence of spiny, dorso-lateral lobes of the transtilla and a very small median part; and a strong, spiny crest of the disc of the valva.

Sychnovalva RAZOWSKI, 1997

Redescriptions. RAZOWSKI & BECKER (2000a).

Diagnosis. *Sychnovalva* was compared to *Isodemis* DIAKONOFF and *Homona* WALKER, all of which share a large, membranous, plicate valva, but *Sychnovalva* differs from those two genera in the shape of the transtilla, which suggests an affinity to the genera allied to *Clepsis* GUÉNÉE.
Remarks. In shape of the transtilla and valva, *Sychnovalva* resembles the Oriental-Australian *Zacorisca* MEYRICK and *Isotenes* MEYRICK, but *Sychnovalva* has a large plicate basal area of the valva and a terminal hair pencil, and females lack a signum.

Syllomatia COMMON, 1963

Diagnosis. According to the original diagnosis, *Syllomatia* differs from *Arotrophora* "primarily on the male genitalia, although characters of the female genitalia, and other structures, together with the habits of the larvae, support this separation. ... The socii are much smaller than in *Arotrophora*, the gnathos is more heavily sclerotized and bizarre, the sacculus end in a short projection, and the transtilla is much more heavily sclerotized and lacks the tomentum found in that genus."

Syllomatia is also mentioned in the diagnosis of *Symphygas* COMMON.

Symphygas COMMON, 1963

Diagnosis. In the original diagnosis the type species is treated as "a connecting link between *Peraglyphis, Parastranga*, and *Paraphyas* on the one hand and *Syllomatia* on the other." COMMON (1963) wrote that "the labial palp in both sexes are shorter than in *Peraglyphis* and *Parastranga* and much shorter than in *Paraphyas."

He also mentioned that the venation is similar to that of *Peraglyphis*, and that "the uncus is quite slender, with rounded apex, suggestive of that in *Parastranga, Paraphyas*, or *Syllomatia*, but quite unlike *Peraglyphis*. He also compared its strong transtilla, sterigma, ostium bursae, and scobinate signum (the latter "is reminiscent of some species of the more specialized species of *Peraglyphis*"

Symphygas is mentioned under *Paraphyas, Parastranga*, and *Peraglyphis*.

Syndemis HÜBNER, [1825] 1816

Syndemis HÜBNER, [1825] 1816, Verz. bekannter Schmett.: 382; 1 sp.: *Tortrix musculana* HÜBNER, 11797-99, Europe. Two species known. PAL, NEA.

Diagnosis. OBRAZTSOV (1954) supposed that *Syndemis* is closely related to *Archips*, and based on larval chaetotaxy, SWATSCHEK (1958) placed it between *Cacoecimorpha* and *Parapandemis*. POWELL (1964) compared *Syndemis* to *Archips*, listing some differing characters.

Remarks. RAZOWSKI (1987) did not find any morphological autapomorphy for *Syndemis* and placed it near *Aphelia* HÜBNER. DOMBROWSKI & SPERLING (2013) confirm this placement but realized that *Syndemis* is more closely related to *Dichelia GUENÉE*.

Syndemis is also mentioned under *Dentisiociaria, Dichelia, Lozotaenia*, and *Neocalyptis*.

Synochoneura OBRAZTSOV, 1955

Synochoneura OBRAZTSOV, 1955, Tjdschr. Ent., 98: 151; 1 sp.: *Eulia ochridis* MEYRICK, 1931, China: Chëksiang. Four species included. PAL, OR.

Diagnoses and remarks of Archipini, Tortricidae

Diagnosis. According to OBRAZTSOV (1955), *Synochoneura* strongly differs from *Eulia ministrana* LINNAEUS, but this is not a useful comparative diagnosis. Unfortunately, there is no published diagnosis.

Remarks. *Synochoneura* was described in Cnephasiini. RAZOWSKI (1987) suggested that shapes of the pulvinus and sterigma are putative autapomorphies for the genus. He also supposed that shape of the signum is of an uncertain importance and is probably plesiomorphic. Other characters cited are of little importance.

Synochoneura is also mentioned under *Aneuxanthis*.

Tacertaenia RAZOWSKI, 1997

Diagnosis. *Tacertaenia* is closely related and externally similar to *Argyrotaenia STEPHENS* but differs from it in the genitalia. The supposed autapomorphies for *Tacertaenia* are the broad, bifid uncus, the arms of the gnathos connected by membrane, and the atrophy of the terminal part of gnathos. The absence of the cornuti, the basal sclerite of the corpus bursae, and shape of the signum are all convergent within the tribe.

Remarks. To the above characters one can add the shape of the transtilla and the degree of sclerotization of the dorsal edge of valva.

Taeniarchis MEYRICK, 1931

Diagnosis. Originally, MEYRICK (1931) compared *Taeniarchis* with *Cnephasia CURTIS; Taeniarchis* can be distinguished by the shape of labial palpi and venation. DIAKONOFF (1939) and COMMON (1963) included *Taeniarchis* in Cnephasini, and the former wrote that *Taeniarchis* is “correlated with the ancestors of *Cnephasia.*” The genitalia of *Taeniarchis* are similar to those of *Arotrophora MEYRICK, but Taeniarchis* species have a simple transtilla and lack a signum.

Remarks. *Taeniarchis* is mentioned under *Arotrophora, Dicanticinta, Drachmoba, Mesocalyptis, Tanycytha, and Tremophora*.

Tanychaeta COMMON, 1963

Diagnosis. According to the original work, *Arotrophora* is not closely related to any other Australian genus. COMMON (1963) stated “it [Tanychaeta] probably has its origin in *Arotrophora* stock, but has become quite specialized morphologically, and unlike any other species of the *Arotrophora* group of genera...”. This hypothesis is confirmed by the large socii and weak transtilla. The female genitalia are somewhat similar to those of *Taeniarchis*, but the sterigma in *Tanychaeta* is simple.

Terricula FALKOVITSH, 1965

Diagnosis. *Terricula* was originally compared to *Epagoje* Hübner from which it differs in forewing venation, having a long stalk of veins R4-R5 and connate M3-CuA1.

Remarks. RAZOWSKI (1987) wrote that the supposed autapomorphy for *Terricula* is the shape of the transtilla, which has a large, finely spined, median part. Aedeagus is characterized by a mediolateral process.

Terthreutis MEYRICK, 1918

Terthreutis MEYRICK, 1918, Exotic Microlepid., 2: 170; 1 sp.: *Terthreutis sphaerocrosa* MEYRICK, 1918, India: Assam; monotypic. Nine species included. PAL, OR.

Anniodes MEYRICK, 1938 [in] CARADJA & MEYRICK, Dl. ent. Z. Iris, 52: 13; 1 sp.: *Anniodes xanthocyclo* MEYRICK 1938, China: Yunnan; monotypic.

Diagnosis. In the original paper, MEYRICK (1918) supposed that *Terthreutis* might be allied to *Cnephasia*, and that proposal was accepted by DIKONOFF (1939). RAZOWSKI (1987) transferred *Terthreutis* to Archipini. *Terthreutis* is related to *Ceramera* and differs from it by the autapomorphies listed below and by the presence of lobes lateral to the ostium bursae.

Remarks. RAZOWSKI (1987) mentioned that the supposed autapomorphies for *Terthreutis* are the shapes of the transtilla and juxta and most probably the circular element of the forewing markings. RAZOWSKI (2008) later stated that the following characters may be of autapomorphic importance: the forewing markings with the oval pale edged blotch and subdivision of the other tortricine pattern elements into a series of oval or rounded pale edged blotches; the shape of the transtilla with its broad basal sclerites and its membranous median part; and the presence of a sack-shaped lobe of distal part of juxta.

Thrincophora MEYRICK, 1881

Thrincophora MEYRICK, 1881, Proc. Linn. Soc. N.S. Wales, 6: 430; 1 sp.: *Thrincophora impetana* WALKER, 1863, Tasmania. 15 species known. OR, AU.

Diagnosis. In the description of this genus MEYRICK wrote “Nearly allied to *Acropolitis* from which it only differs in the palpi which are arched upwards and appresed to face... whilst in *Acropolitis* they are straight and horizontally porrected.”

Thrincophora is also discussed under *Acropolitis*.

Tosirips RAZOWSKI, 1987

Tosirips RAZOWSKI, 1987, Nota lepid., 10: 87; 1 sp.: *Tosirips perlpolcheviana* KENNED., 1901, Russia: Primorskij Knj. Two species included. PAL.

Diagnosis. Originally *Tosirips* was compared to *Ptycholomoides* OBRAZTSOV from which it differs by the less specialized terminal portion of gnathos. Its transtilla is somewhat similar to that in *Archips* Hübner, but the dorsal part is not expanding proximally.

Remarks. According to RAZOWSKI (1987), the supposed autapomorphies for *Tosirips* are the shape of the lateral portions of transtilla and the long, weakly sclerotized socius.
Tremophora DIAKONOFF, 1953

Diagnosis. The original diagnosis states “Allied to Taeniarchis MEYRICK but with veins 7 and 8 in fore wing stalked. Differing from all other known genera of Microlepidoptera by the presence of peculiar abdominal sense organs in the two sexes.”

Remarks. From the original figures it appears that the median process of the transtilla is consistent in all Tremophora species, and is similar to that of Aeolostoma MEYRICK [Epitymbiini], and that the valva probably has a well-sclerotized costa. Neither genus was re-examined for this paper.

Tuckia RAZOWSKI, 2001

Tuckia RAZOWSKI, 2001, Polish J. Entomol., 70: 87; t. sp.: Tuckia zluma RAZOWSKI, 2001, South Africa; two species included. AFR.

Diagnosis. RAZOWSKI (2001) provided no comparative diagnosis in the original description. RAZOWSKI (2004) later compared Tuckia to Philidone HÜBNER, both of which are characterized by a well developed costa of the valva and a broad median lobe of transtilla, but in Tuckia the latter has thorns or processes.

Ualomides MEYRICK, 1907

Uodomis MEYRICK, 1907, J. Bombay Nat. Hist. Soc., 17: 736; t. sp.: Uodomis trigrapha MEYRICK, 1907, Bholan. Four species known. PAL, OR.

Diagnosis. In the original description MEYRICK (1907) wrote “Apparently allied to Pandemis.” DIAKONOFF (1939) stated that this is “a very natural genus, of which the typical characters are the armed point of the gnathos and the scaled socii.”

Remarks. According to RAZOWSKI (1987), the spinose end part of the gnathos and the structure of the uncus are the supposed autapomorphies for the genus. The presence of scent scales of the sterigma and the brush of the uncus are convergent.

Uodomis is mentioned under Alldodemis, Choanograptis, Electraglaia, and Homona.

Vialonga DIAKONOFF, 1960

Diagnosis. Originally placed in Cnephasini, DIAKONOFF (1960) stated distinguished by “the remarkable female genitalia”; the male remains unknown. DIAKONOFF supposed that it is “perhaps allied with” Mabilleodes in his description of the latter genus.

Viettea DIAKONOFF, 1960

Diagnosis. DIAKONOFF (1960) compared Viettea to Ptycholomoides OBRAZTsov, stating “a peculiar genus, judging from the male genitalia perhaps allied with Ptycholomoides”; DIAKONOFF also mentioned that Viettea resembles some Asian Adoxophyes MEYRICK.
Remarks. Based on the original drawing, RAZOWSKI (2004) supposed that the putative autapomorphy for Viettea is the shape of the socius, the ventral edge of which is developed into a sclerotized hook. The transtilla of Viettea has two submedian dorsal prominences; but the valva and uncus are similar to those of several other genera of the Pandemis-group to which this genus belongs.

Williella HORAK, 1985

Diagnosis. The comparative diagnosis is in the “comments” of the original description. Williella is externally similar to derived genera like Choanograpthis MEYRICK, Ctenopeustis MEYRICK, and Epalxiphora MEYRICK.

Williella is mentioned under Choanograpthis.

Xenophylla DIAKONOFF, 1960

Diagnosis. Xenophylla was not compared with any genus, but it was treated in the key to genera of Schoenotenini and placed near Bactrostoma DIAKONOFF. Based on the original description, RAZOWSKI (2004) deduced that the male genitalia have a broad terminal part of the uncus, and a strong sacculus and transtilla, the latter broadening and spiny laterally somewhat resembling that of Paramesiodes DIAKONOFF. The aedeagus is certainly more similar to Paramesiodes than to the Pandemis group of genera. In the female genitalia, the sternum has a broad, scobinate poststial part and signum typical of Archipini.

Xenothictis MEYRICK, 1910

Diagnosis. MEYRICK (1910) wrote “Probably related to Cnephasia: it has the neuration of Torrix but differs by the peculiar palpi and form of hindwings.” TURNER’s diagnosis for Barnardiella sounds: “A local derivative of Torrix distinguished by the peculiarities of the male antennae and thorax.”

Remarks. DIAKONOFF (1961) provided comments on Xenothictis in his the original description of Xeneda. “The genus is closely allied to Xenothictis MEYRICK, 1910, and differs by the remarkable additional pair of socii which are not homologous with the hami of the Chlidanotinae, because... the normal pair of socii is also rather different than in Xenothictis”. BROWN & al. (2003) listed the species of Xenothictis and Xeneda and RAZOWSKI (2013) synonymized Xeneda.

Zacorisca MEYRICK, 1910

Diagnoses and remarks of Archipini, Tortricidae

Megalodoris MEYRICK, 1912, Exotic Microlepid., 1: 5; 1. sp.: Atteva stephanitis MEYRICK, 1910, Indonesia: Flores.

Redescription. DIJKONOFF (1952) of Zacorisca.

Diagnosis. In the original comparative diagnosis Meyrick states Zacorisca “appear to be a development of Tortrix.” There is no comparative diagnosis for Megalodoris.

Remarks. DIJKONOFF (1952) did not compared Zacorisca to any other genus, but in the description of Chionothremma he mentioned that the latter is “closely allied to Zacorisca, and showing the same high specialization except for the smooth head and the bright colors of the latter…” and that “…the specimens [of Chionothremma] are of smaller size than those in Zacorisca.” DIJKONOFF (1952) diagnosed Diptheryopyga as follows: “Closely allied to Chionothremma gen. n., differing by the absence of the costal fold in male, the rougher head and the structure of the anal segment in female. Intermediate between Zacorisca and the former [Chionothremma] genus.”

In his description of Chresmarcha, DIJKONOFF wrote that “Chresmarcha is correlated with Adoxophyes” and DIJKONOFF (1939), based on the external habit, realized that Zacorisca is synonymous with Chresmarcha.

Zacorisca is also mentioned under Sychnovalva.

Zelotherses LEDERER, 1859

Dyakonovia OBRAZTsov, 1942, Dl. ent. Z. Iris, 56: 158; 1. sp.: Tortrix euxiana DIAKONOV, 1929, East Europe.

Diagnosis. Zelotherses is closely related to Aphelia HÜBNER but has a simple transtilla (in Aphelia the transtilla has two lateral lobes) and slender, unarmed processes of the gnathos.

Remarks. RAZOWSKI (1987) could find no autapomorphy for this genus, concluding that the majority of characters are of the convergent importance only. He treated it as a subgenus of Aphelia. Based on molecular analysis, DOMBROSKIE & SPERLING (2013) proposed to raise Zelotherses to the generic level.

Zelotherses is also mentioned under Aphelia, Ascereodes, and Sacaphelia.

Acknowledgements. The author thanks Dr John S. DUGDALE, Auckland and Dr Marianne HŐRÁK, Canberra for providing important Tortricinae materials consisting of identified specimens from New Zealand and Australia. Special thanks are due to Washington D.C. Dr John W. Brown for important remarks and linguistic corrections.
REFERENCES

HORAK M. 1984. Williella – a new tortricine genus from New Caledonia indicating Gondwanan distribution
for the family (Lepidoptera: Tortricidae). Entomologica Scandinavica, 15: 423-433.
ISSIKI S.T., STRINGER H. 1931. Two new genera and one new species of Japanese and Formosan Tortricidae.
Styllops, 1: 134-136.
JINBO U. 2000. Phylogeny of the tribe Archipini (Lepidoptera, Tortricidae, Tortricinae) of Japan; cladistic ap-
proach. Tokyo Metropolitan University Bulletin of Natural History, 4: 33-75.
KAWADE A. 1965. A revision of the genus Archips from Japan. Taxonomic study of the Japanese Tortricinae,
KUZNETSOV V. I. 1964. New genera and species of leaf-rollers (Lepidoptera Tortricidae) from the Far East.
Entomologitcheskie Obozrenie, 43(4): 873-889 [in Russian].
Opredelitel nasekomykh Evropeiskoy tchasti SSSR, 4: 193-710 [in Russian].
LOWER O.B. 1901. Descriptions of new genera and species of Australian Lepidoptera. Transactions of the
Royal Society of South Australia, 25: 63-98.
MEYRICK, 1882. Descriptions of New Zealand Micro-Lepidoptera. Transactions of the New Zealand Institute,
15: 3-68.
MEYRICK E. 1907a. Descriptions of Indian Microlepidoptera. Journal of the Bombay Natural History Society,
17: 697-994.
MEYRICK E. 1907b. Descriptions of Indian Microlepidoptera. Journal of the Bombay Natural History Society,
17: 730-754.
MEYRICK E. 1908. Descriptions of Indian Microlepidoptera. Journal of the Bombay Natural History Society,
18: 613-638.
1-28, 8 pls.
Wales, 35: 139-294.
MEYRICK E. 1923. Descriptions of New Zealand Lepidoptera. Transactions of the New Zealand Institute,54:
162-169.
MEYRICK E. 1924. Notes and descriptions of New Zealand Lepidoptera. Transactions of the New Zealand In-
situte, 55: 661-662.
MEYRICK E. 1938. Papuan Microlepidoptera. Transactions of the Royal Entomological Society London, 87:
503-528.
NYE L.B.F., FLETCHER D.S. 1991. The generic names of moths of the World, 6, Microlepidoptera. Natural His-
OBRATZSOV N. S. 1954. Die Gattungen der Palaearktischen Tortricidae. I. Allgemeine Aufstellung der Familie
und die Unterfamilien Tortricinae und Sparganothinae. 1. Fortsetzung. Tijdschrift voor Entomologie, 97(3):
141-231.
und die Unterfamilien Tortricinae und Sparganothinae. 1. Fortsetzung. Tijdschrift voor Entomologie, 98(3):
147-228.
OBRATZSOV N. S. 1959. Note on North American Aphelia species (Lepidoptera, Tortricidae). American Mu-
OBRATZSOV N. S. 1966. Neotropical Microlepidoptera, XI. Revision of genus Idolatteria (Lepidoptera: Tor-

Diagnoses and remarks of Archipini, Tortricidae

INDEX TO SYNONYMS

Amelia - Aphelia
Amniodes - Terpthreutis
Amphisa - Philedone
Anphysa - Philedone
Archepeandemis - Pandemis
Archieps - Archips
Archippus - Archips
Arctephora - Cryptoptila
Argyrothroenia - Argyrotaenia
Austoretortrix - Epiphyas
Austrotortrix - Epiphyas
Automaema - Authomaema
Axiopepes - Acroceuthes

Barnardiella - Xenothictis
Batoideas - Ditula
Cacofecia - Archips
Cacoecia - Archips
Calala - Neocalyptis
Chionotrema - Zacorisca
Chresmarcha - Zacorisca
Chresmarche - Zacorisca
Clepsimorpha - Neocalyptis
Corniacocoeia - Choristoneura
Cryptoptyla - Cryptoptila
Cudonigera - Choristoneura
Curvisaccula - Ecclitica

Diadomorphina - Planostocha
Diakonovia - Zelotheres
Dilata - Ditula
Diptheropysa - Zacorisca
Diptheropysa - Zacorisca

Ericia - Homona
Ericiana - Homona
Eurytheca - Eurythecia

Godana - Homona

Hastula - Avaria
Hoshinoa - Choristoneura

Izotaenia - Lozotaenia