Prosomys insuliferus (Kowalski 1958) (Rodentia, Mammalia) from the Pliocene of Poland and of the European Part of the U.S.S.R.

[PP. 29—54, 53 text-figs.]

Abstract. Remains of the rodent Prosomys insuliferus (Kowalski 1958) (Arvicolidae) from the Pliocene of Podlesice in Poland and from Antipovka and Chugunovka in the European part of the U.S.S.R. are described. The faunal lists of these fossil localities are given. Prosomys insuliferus is also known from the Pliocene of Vendargues in France and another species of this genus P. minus Shotwell 1956 from the western part of the U.S.A. The systematic position of other primitive forms of Arvicolidae is discussed. Prosomys Shotwell 1956, primitive in many of its characteristics, nevertheless belongs to the family Arvicolidae and is its oldest well known member.

INTRODUCTION

In 1958 Kowalski described from Podlesice in Poland a new species of fossil rodents under the name of Promimomys insuliferus. In 1959 Kretzoi created a new genus for it, Polonomys, this name, however, was seldom used by later students. In 1968 Repenning, comparing the material from Podlesice with Prosomys minus Shotwell 1956 from the Hemphillian of Oregon, came to the conclusion that they belong to one genus and therefore included the American

* Praca wykonana w ramach problemu MR. II. 3.
1 — Acta Zoologica Cracoviensia XXIII/3
form in the genus *Promomomys Kretzoi* 1955. Besides Podlesice, *P. insuliferus* has been found in Vendargues and Canterrane in France (Michaux 1971, 1976).

The collection of new specimens in Podlesice and the discovery of an identical form in new localities, Antipovka and Chugunovka in the Voronezh region (the U.S.S.R.) stimulated the authors to undertake a new description of the species known as *Promomomys insuliferus* and to revise its systematic position.

LOCALITIES

Podlesice. Fossil remains from Podlesice near Kroeczyce in Central Poland (19°32'E, 50°34'N) were collected in a bone breccia filling a small karstic hole inside a cave in Jurassic limestone. It was discovered by K. Kowalski, who published a note on it in 1951 and a description of fauna in 1956. In the fossil materials bones of bats prevailed, remains of reptiles and small mammals from the orders of Insectivora, Rodentia and Carnivora were also found. Further contributions to the fauna of Podlesice were published by Black and Kowalski (1974), Fahlbusch (1969, 1978), Kowalski (1958, 1959, 1962, 1963, 1964, 1974), Młynarski (1962) and Rzebić-Kowalska (1971, 1975, 1976). The geological age of the breccia can be determined only on the base of the fauna. It was first erroneously determined as Early Pleistocene (Kowalski 1956), later generally recognized as Lower Pliocene (Kowalski 1958, and others). The opinion of Berggren and van Couvering (1974) that the fauna from Podlesice was accumulated in the uppermost Miocene does not seem justified.

The fauna from Podlesice contains the following forms (species marked with a cross need revision as to their systematic position):

Reptilia

Ophisaurus pannonicus Kormos 1917
Anguis cf. *fragilis* Linnaeus 1758
Lacerta sp.
Elaphe sp.

Mammalia

Insectivora

+ *Talpa minor* Freudenberg 1914
 Desmana nohringi Kormos 1913
+ *Sorex alpinoides* Kowalski 1956
+ *Sorex dehneli* Kowalski 1956
+ *Sorex runtonensis* Hinton 1911
+ *Sorex minutus* Linnaeus 1766
+ *Petenyia hungarica* Kormos 1934
Paramoursorex gigas RzebiK-Kowalska 1975
Blarinoides mariae Sulimski 1959
+ Petenyiella gracilis (Petenyi 1864)
+ Soriculus kubinyi Kormos 1934

Chiroptera
Rhinolophus delphinensis Gaillard 1899
Rhinolophus gricensis (Depéret 1892)
Miniopterus schreibersi (Kuhl 1819)
Plecotus crassidens Kormos 1930
Myotis podlesicensis Kowalski 1956
Myotis davutae Kowalski 1956
Myotis dasycneme subtilis Kowalski 1956
Myotis cf. aemulus Heller 1936
Myotis cf. exilis Heller 1936

Carnivora
Baranogale helbingi Kormos 1934
Vormela cf. petenyi Kretzoi 1942
Mustela sp.

Rodentia
Sciurus cf. warthae Sulimski 1964
Tamias cf. orlovi (Sulimski 1964)
Pliopeterutisa cf. dehneli (Sulimski 1964)
Blackia polonica Black and Kowalski 1974
Pliopetes hungaricus Kretzoi 1959
Pliopeterutisa sp.
Sciurinae indet. (cf. Sciurotamias)
Leptodontomys aff. catalaunicus (Hartenberger 1967)
Keramidomys mohleri Engesser 1972
Estramomys sp.
+ Sminthozapatus sp.
+ Anomalomys sp.
+ Parapodemus coronensis Schaub 1938
Kowalskia magna Fahlbusch 1969
Kowalskia polonica Fahlbusch 1969
Cricetus sp. 1
Cricetus sp. 2
Epimeriones progressus Kowalski 1974
Baranomys kowalskii Kretzoi 1962
Prosomys insuliferus (Kowalski 1968)
"Trilophomys" cantarvanesis Michaux 1976
Glirulus pusillus (Heller 1936)
Muscardinus plocaenicus Kowalski 1963
Muscardinus cf. dacicus Kormos 1930
Glis minor Kowalski 1956
Lagomorpha
+ Ochotonidae gen. et sp. indet.
+ Leporidae gen. et sp. indet.

Antipovka and Chugunovka. The material described in the present paper comes from the collection made by a geologist, Dr. P. W. Krasnenkov. It was obtained by washing and screening of old alluvial sediments of wide extent. The terrain where the collections were made is situated between the rivers Bityug and Don, near the villages Antipovka and Chugunovka in the Voronezh district. Outcrops of continental sediments of different origin and of different age (from Early Pliocene to Late Pleistocene) are to be found here in ravines and river valleys. Clays, loams, fossil soils, redeposited loesses, clayey limnic sediments, alluvial sands and gravels are represented among the sediments. River sediments from a well developed and well studied system of old terraces (Krasnenkov et al. 1970, Krasnenkov, Agadjanian 1975, 1976).

The central part of the Russian Plain has undergone a continual uplifting since the beginning of the Miocene. That is why new river valleys were formed on successively lower levels. As a result, river sediments on higher levels are older, lower ones younger. On the middle Don about twenty old river terraces were differentiated.

The relative age of each terrace was determined by detailed geological studies. In more complicated cases data from borings and from the study of sections helped to reconstruct the history of the geomorphological development and the sequence of layers of river sediments.

The geomorphological stratigraphy has to be supplemented by biostratigraphical data (Jánossy 1974). In the region of the middle Don it is possible, because nearly all layers of the terraces contain remains of small mammals. These remains make it possible to determine the geological age of sediments by referring them to the relatively well known succession of faunas in Western as well as Eastern Europe. In dating the development of fauna localities, in which the layers containing rodent remains alternate with typical marine sediments are of particular importance. In the European part of the U.S.S.R. such localities include Kva-beli, Kuchurgan and many other sites in the Black Sea region, as well as Akulaev in Bashkiria. They make it possible to refer the sediments of river terraces of the middle Don to the successive phases of the development of the Russian Plain.

On the other hand, the succession of terraces helps to establish the sequence of faunas, which is not always clear, particularly when the difference in age is small.

In the vicinity of the villages Antipovka and Chugunovka the sands which belong to the uppermost level, and therefore represent the oldest complex of terraces, are exposed. The distance between these two villages is only about 1 km. In both localities the outcrops have identical sections and differ only slightly in thickness. Their profile is as follows:

In the floor there are chalks of the Cenomanian. They are overlaid by sand beds, 5 m (on the watershed) to 20 m thick. The lower part of them contain gra-
vel and coarse sand, in the upper they are interbedded by middle- and fine-grained sands with cross bedding typical of river sediments. They contain freshwater gastropods, remains of reptiles and of small mammals. This series of river sediments can be referred to the Middle Pliocene.

Higher in the section sands are interbedded by horizontal layers of clays of watershed fraction. They turn successively into red-brown fossil soil of steppe character with a well developed profile, up to 2 m thick. Similar fossil soils are of wide extent in the middle and southern parts of the Russian Plain. It is generally accepted that they developed in the Upper Pliocene. They are overlaid by ancient loesses. Above them there are Pleistocene sediments containing boulder-clay of the Middle Pleistocene (Riss I), fossil soil and finally loess from the period of the Würm glaciation. Their total thickness reaches 30 m.

In bone-bearing layers of Antipovka and Chugunovka R. V. Krasnennyov collected about 200 specimens. The following mammalian forms were determined in the material:

Insectivora
- Desmana sp. 5 specimens
- Talpa sp. 1 specimen
- Erinaceus sp. 2 specimens
- Crocidura sp. 1 specimen

Lagomorpha
- Ochotona pseudopusilla Guryev and Shevchenko 1964 76 specimens
- Hypolagus ex. gr. gromovi Gureev 1964 30 specimens

Rodentia
- Pliopetvia sp. 1 specimen
- Trogontherium minus Newton 1890 1 specimen
- Microspalax ex. gr. odessanus Topachevski 1969 19 specimens
- Allocricetus sp. 5 specimens
- Epimeriones sp. 1 specimen
- Prosomys insuliferus (Kowalski 1968) 68 specimens

In general the fauna is characterized by the numerous occurrence of the lagomorphs, the small number of cricetids and complete lack of typical voles. Its most interesting feature is undoubtedly the presence of **Prosomys insuliferus**.

DESCRIPTION OF THE MATERIAL

Podlesice. The material, preserved in the collections of the Institute of Systematic and Experimental Zoology, Polish Academy of Sciences, in Kraków (No MF/22) contains the holotype, fragmentary left mandible with m₁–m₃ (MF/22/1), skull fragment with complete right tooth-row and with mandible (m₁–m₂ preserved) (MF/22/68), 2 mandibles with m₁–m₃, 5 mandibles with m₁–m₂,
1 mandible with m₃ (all mandibles more or less damaged), isolated molars: 8 m₁, 10 m₂, 9 m₃, 13 m₁, 9 m², 9 m³. In the entire material particular molars are represented in the following numbers:

m₁ m₂ m₃ m¹ m² m³ 18 19 12 14 10 10

Figs. 1—3. Progomys insuliferus, Podlesice, mandibles. 1 — MF /22/ 1 (holotype); 2a — MF /22/ 6; 2b — MF /22/ 5; 3a—3b — MF /22/ 2
Figs. 4—22a. *Prosomys insuliferus*, Podlesice, occlusal view of the molars. 4 — m₁—m₃, MF/22/1 (holotype); 5 — m₁—m₃, MF/22/6; 6 — m₁—m₃, MF/22/2; 7a—m₁, MF/22/11; 8a—m₁, MF/22/12; 9a—m₁, MF/22/9; 10a—m₂, MF/22/20; 11a—m₃, MF/22/19; 12a—m₃, MF/22/35; 13a—m₃, MF/22/31; 14a—m₃, MF/22/29; 15a—m₃, MF/22/47; 16a—m₃, MF/22/52; 17a—m₃, MF/22/54; 18a—m₃, MF/22/67; 19a—m₃, MF/22/61; 20a—m₃, MF/22/66; 21a—m₃, MF/22/62; 22a—m₃, MF/22/64
Mandible robust. On the buccal surface of the ascending ramus there is a depression situated posteroventrally from the anterior edge of this ramus and parallel to it ("Arvicoline groove" according to Repenning, 1968). Lower masseteric crest prominent. Deep internal temporal fossa separates the row of lower molars from the ascending ramus. Diastema short. Arvicolid groove and lower masseteric crest meet at an acute angle. The end of processus coronoides ascends nearly to the level of the upper margin of processus articularis. Processus angularis strongly developed, its end protruding behind the vertical line descending from the end of processus angularis. The constriction of processus articularis under its articular part unconspicuous.

Lower incisor massive. Its anterior part situated lingually from m₁ and from the anterior root of m₂. Further back the incisor passes below the posterior root of m₂, which is shortened and provided with a conspicuous incision, and then goes buccally from m₂. The proximal part of the incisor ascends far above the molar row and forms a prominent protuberance on the lateral surface of the processus coronoides.

Molars are mesodont, rooted. Their crowns are distinctly broader in the basal parts; when the molars are worn down, their grinding surface is much broader than it is in young teeth. The enamel thick, without dentine tracks, only slightly thinner in the anterior part of m₁ and in posterior part of m². No traces of cement in reentrant angles.

M₁ has two roots. Its grinding surface is composed of the anterior loop, three enamel triangles and the posterior loop. The anterior loop is simple, without additional re-entrant angles. On its surface, in all specimens except very old ones there is an enamel island. The enamel cone of this island reaches below half the height of the unworn tooth. The island is not formed by closing of a re-entrant angle. It is oval in shape, obliquely situated, and occupies a large part of the anterior loop. Second and third triangle are relatively broadly confluent.

M₂ two-rooted, the anterior root round in cross-section, slightly inclined buccally, the posterior one more massive, antero-posteriorly compressed, provided on its lower end with an incision for the incisor which passes below it. The grinding surface composed of the anterior loop (containing broadly confluent first enamel triangle), of two isolated or slightly confluent enamel triangles, and of the posterior loop.

M₃ with two roots. The anterior one is smaller, antero-posteriorly compressed and vertical, the posterior one larger, round in cross-section and directed obliquely backwards. The grinding surface composed of the anterior loop, which is broadly confluent with the small, antero-external enamel triangle, and of the internal triangle broadly confluent with the posterior loop.

The proximal end of the upper incisor meets the anterior end of m₁.

M₁ with three roots: the anterior and posterior one are round in cross-section, the middle root is laterally compressed, situated on the buccal side of the crown nearer its posterior end. The grinding surface of the crown composed of the anterior loop, which is distally concave, of three enamel triangles and of the
posterior loop. Two anterior triangles are confluent, the third one broadly connected with the posterior loop, which is proximally distinctly convex.

M^2 three-rooted. Posterior root is round, situated nearly on the long axis of the tooth. Of the two anterior roots the buccal one is slender and round, the lingual one large and laterally compressed. In two specimens on the proximal ridge of the anterior lingual root there is a small additional root, which is fused with the main root along nearly the whole of its length, but divided by a groove. Only its end is free. In another specimen there is an additional, entirely independent fourth root on the postero-lingual part of the crown.
The grinding surface composed of the anterior loop (which is distally convex), of two enamel triangles and of the posterior loop, its proximal border also convex. The posterior enamel triangle is broadly confluent with posterior loop.

M3 has, as a rule, three roots. The posterior one is large, the two anterior roots smaller, all round in cross-section. In two specimens the anterior roots are fused at the base, but their ends are free. In another specimen the anterior roots are fused along the whole of their length, and the only trace of their independence is a vertical groove. Finally, there is one specimen with its anterolingual root bifurcated at the end, and another one with this root divided into two, so that the tooth is four-rooted.

In all specimens of m3 there is an enamel island on the posterior loop. No traces of the formation of this island through the closing of a re-entrant angle can be seen in our material. This posterior enamel island is large, oval, sometimes with its ends directed backwards. It persists even in deeply worn teeth. The second, anterior island developed through the closing of the end of the anterior re-entrant angle and is much more ephemeric.

The dimensions of the material from Podlesice are given in tables I and II. Antipovka and Chugunovka. In the collection from these two localities, there are 69 isolated molars of Prosomys insuliferus. The material is very well preserved, only the roots are broken in some specimens. No morphological differences between materials from both localities could be found. The dimensions of specimens from Antipovka and Chugunovka (table III) are similar and the differences are statistically insignificant. The material is, therefore, described jointly.

Table I

Dimensions of mandibles of Prosomys insuliferus from Podlesice (in mm)

<table>
<thead>
<tr>
<th>No</th>
<th>M1-M2</th>
<th>M2-M3</th>
<th>M1 L</th>
<th>M1 W</th>
<th>M2 L</th>
<th>M2 W</th>
<th>M3 L</th>
<th>M3 W</th>
<th>Length of diastema</th>
<th>Height of mandible below m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF/22/1</td>
<td>5.80</td>
<td>4.30</td>
<td>2.51</td>
<td>1.23</td>
<td>1.85</td>
<td>1.31</td>
<td>1.51</td>
<td>1.10</td>
<td>—</td>
<td>3.60</td>
</tr>
<tr>
<td>MF/22/10*</td>
<td>—</td>
<td>4.30</td>
<td>2.37</td>
<td>1.20</td>
<td>1.88</td>
<td>1.22</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>MF/22/11</td>
<td>—</td>
<td>4.15</td>
<td>2.37</td>
<td>1.18</td>
<td>1.78</td>
<td>1.22</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3.55</td>
</tr>
<tr>
<td>MF/22/12</td>
<td>5.90</td>
<td>4.50</td>
<td>2.48</td>
<td>1.20</td>
<td>1.85</td>
<td>1.20</td>
<td>1.43</td>
<td>0.95</td>
<td>3.25</td>
<td>3.90</td>
</tr>
<tr>
<td>MF/22/13</td>
<td>—</td>
<td>4.47</td>
<td>2.59</td>
<td>1.31</td>
<td>1.90</td>
<td>1.32</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3.58</td>
</tr>
<tr>
<td>MF/22/14</td>
<td>—</td>
<td>4.10</td>
<td>2.32</td>
<td>1.16</td>
<td>1.82</td>
<td>1.19</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3.30</td>
</tr>
<tr>
<td>MF/22/15</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.85</td>
<td>1.10</td>
<td>—</td>
<td>—</td>
<td>3.16</td>
<td>3.60</td>
</tr>
<tr>
<td>MF/22/16</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.70</td>
<td>1.12</td>
<td>—</td>
<td>—</td>
<td>3.10</td>
<td>3.78</td>
</tr>
<tr>
<td>MF/22/17</td>
<td>—</td>
<td>—</td>
<td>2.49</td>
<td>1.20</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3.80</td>
</tr>
<tr>
<td>MF/22/18</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.70</td>
<td>1.10</td>
<td>—</td>
<td>—</td>
<td>3.00</td>
<td>3.63</td>
</tr>
<tr>
<td>MF/22/22</td>
<td>6.00</td>
<td>4.50</td>
<td>2.62</td>
<td>1.30</td>
<td>1.85</td>
<td>1.30</td>
<td>1.55</td>
<td>1.12</td>
<td>3.50</td>
<td>3.65</td>
</tr>
</tbody>
</table>

* Dimensions of upper molars in the specimen MF/22/10: m3—m3 5.63, m1 L 2.15, W 1.40, m2 L 1.77, W 1.30, m3 L 1.73, W 0.22.
Table II

Dimensions of molars of *Prosomys insuliferus* from Podlesice
(in mm)

<table>
<thead>
<tr>
<th></th>
<th>Length</th>
<th></th>
<th></th>
<th>Width</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>min</td>
<td>m</td>
<td>max</td>
<td>n</td>
<td>min</td>
</tr>
<tr>
<td>M^1</td>
<td>13</td>
<td>2.04</td>
<td>2.23</td>
<td>2.35</td>
<td>13</td>
<td>1.08</td>
</tr>
<tr>
<td>M^2</td>
<td>10</td>
<td>1.70</td>
<td>1.81</td>
<td>1.90</td>
<td>10</td>
<td>1.19</td>
</tr>
<tr>
<td>M^3</td>
<td>10</td>
<td>1.61</td>
<td>1.73</td>
<td>1.88</td>
<td>10</td>
<td>1.10</td>
</tr>
<tr>
<td>M_1</td>
<td>15</td>
<td>1.91</td>
<td>2.43</td>
<td>2.65</td>
<td>15</td>
<td>1.04</td>
</tr>
<tr>
<td>M_2</td>
<td>20</td>
<td>1.58</td>
<td>1.86</td>
<td>2.05</td>
<td>20</td>
<td>1.07</td>
</tr>
<tr>
<td>M_3</td>
<td>12</td>
<td>1.26</td>
<td>1.45</td>
<td>1.56</td>
<td>12</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Table III

Dimensions of molars of *Prosomys insuliferus* from Antipovka and Chugunovka
(in mm)

<table>
<thead>
<tr>
<th></th>
<th>Length</th>
<th></th>
<th></th>
<th>Width</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>min</td>
<td>m</td>
<td>max</td>
<td>n</td>
<td>min</td>
</tr>
<tr>
<td>M^1</td>
<td>8</td>
<td>2.0</td>
<td>2.18</td>
<td>2.4</td>
<td>13</td>
<td>1.1</td>
</tr>
<tr>
<td>M^2</td>
<td>1</td>
<td>—</td>
<td>1.8</td>
<td>—</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>M^3</td>
<td>4</td>
<td>1.6</td>
<td>1.67</td>
<td>1.7</td>
<td>4</td>
<td>1.0</td>
</tr>
<tr>
<td>M_1</td>
<td>5</td>
<td>2.25</td>
<td>2.37</td>
<td>2.55</td>
<td>6</td>
<td>1.0</td>
</tr>
<tr>
<td>M_2</td>
<td>4</td>
<td>1.65</td>
<td>1.77</td>
<td>1.85</td>
<td>4</td>
<td>0.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Length</th>
<th></th>
<th></th>
<th>Width</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>min</td>
<td>m</td>
<td>max</td>
<td>n</td>
<td>min</td>
</tr>
<tr>
<td>M^1</td>
<td>9</td>
<td>2.0</td>
<td>2.16</td>
<td>2.3</td>
<td>16</td>
<td>1.1</td>
</tr>
<tr>
<td>M^2</td>
<td>7</td>
<td>1.7</td>
<td>1.76</td>
<td>1.8</td>
<td>8</td>
<td>1.0</td>
</tr>
<tr>
<td>M^3</td>
<td>3</td>
<td>1.55</td>
<td>1.62</td>
<td>1.7</td>
<td>4</td>
<td>1.0</td>
</tr>
<tr>
<td>M_1</td>
<td>5</td>
<td>2.2</td>
<td>2.35</td>
<td>2.5</td>
<td>5</td>
<td>1.1</td>
</tr>
<tr>
<td>M_2</td>
<td>6</td>
<td>1.65</td>
<td>1.79</td>
<td>1.9</td>
<td>7</td>
<td>0.95</td>
</tr>
<tr>
<td>M_3</td>
<td>2</td>
<td>1.45</td>
<td>—</td>
<td>1.5</td>
<td>2</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Molars of mesodont type. The height of the crown even in youngest teeth is smaller than the length of their grinding surface exception made for M^2 where in young teeth both dimensions are similar. The thickness of enamel is nearly the same around the crown, only in the anterior parts of M_1 and M_2 and in posterior part of M^3 it is slightly thinner. The lower border of the enamel is smooth, without dentine-tracks. There are no traces of cement in re-entrant angles.

M_1. The crown is distinctly broader in the basal part. Two well developed roots are present. The grinding surface is slightly narrower in its anterior part.
Figs. 23a—38a. *Prosomys insuliferus*, Chugunovka, occlusal view of the molars. 23a—26a — m_1; 27a—28a — m_2; 29a—30a — m_3; 31a—33a — m^1; 34a—35a — m^2; 36a—38a — m^3
Figs. 23b—38b. *Prosomys insuliferus*, Chugunovka, buccal view of the same molars as in Figs. 23a—38a. 25c, 27c, 28c — posterior view; 31c, 34c, 35c, 37c — anterior view; 33c — view from the root-side.

All the enamel fields are distinct but not completely isolated. The broader confluence exists between the second and third triangle (protoconid and endoconid) and also between the paraconid and metaconid. Two re-entrant angles are present on both the external and internal side of the crown. In all younger
teeth the anterior loop (paraconid) with an enamel island. The enamel cone of this island reaches to about 1/3 of the height of the unworn crown. In middle stages of wear the island is oval in shape and of large dimensions. When 2/3 of the original height of the crown are worn, the island disappears.

When comparing specimens of different individual age it can be seen that in young teeth there is a shallow, additional re-entrant on the internal side of the paraconid. This re-entrant angle has no connection with the island and disappears when the teeth are worn more deeply. The length of the crown is greater in old than in young teeth, as a result of the greater length of the lower part of the crown. In very old teeth the roots are larger.

M_3 is of medium size. Its crown, distinctly inclined forwards, narrows in the upper part. It is composed of three triangles, of the paraconid and of posterior
Figs. 39b—51b. Prosomys insuliferus, Antipovka, buccal view of the same molars as in Figs. 39a—51a. 40c — fragment of m2, the depth of the enamel island can be seen; 42c, 44a — posterior view; 45c, 47c, 50c — anterior view; 48c — lingual view

loop (hypocenid + posterolophid). The paraconid is confluent with the metaconid, the protoconid with the endoconid. The tooth has two re-entrants on each side. The roots are well developed. The anterior one is long, round in cross-section, its lower end inclined towards the buccal side of the mandible. Posterior root is massive, antero-posteriorly compressed and distinctly broader in the lower part. On older teeth it can be seen that it developed through the fusion of two roots. The form of m2 proves that the lower incisor passes in the mandible lingually of the anterior root of this tooth and that the posterior root of m2 is situated above the back of the incisor.

During the ontogenesis the pattern of the grinding surface of m2 does not change much, only the breadth of this surface increases. With the development of m2 the posterior root tightly embraces the back of the incisor. In very old teeth this root is somewhat reduced.

M3 of small dimensions. The crown is distinctly inclined forward. The grinding surface is composed of three triangles, of the small paraconid and of the
anterior loop. The paraconid is confluent with the metaconid, the protoconid with the endoconid. On the internal as well as on the external side there are two re-entrant angles.

M¹ large, its crown slightly inclined backwards and distinctly narrowing towards the grinding surface. This surface is composed of three enamel triangles and of the anterior and posterior loop. The paracone broadly confluent with the protocone, the hypocone with the metacone. The anterior loop (anterocone) is best isolated. On each side of the tooth there are two re-entrants. M¹ has three well developed roots. The anterior and posterior root are round in cross-section. The middle one is situated buccally from the long axis of the tooth, nearer its posterior end, and is laterally compressed.

In the process of ontogenesis the salient angles become less pointed. The confluence of the protocone with the paracone and the hypocone with the metacone becomes greater and the total length of the grinding surface larger.

M² of medium size, with the crown quite high, slightly inclined forwards. The grinding surface is composed of two triangles, of the posterior and anterior loop. The anteroloph completely confluent with the protocone. On the internal side of the tooth there is one re-entrant angle, on the external size there are two. In all the specimens there are roots. The anterior buccal root and the posterior root are round in cross-section. The antero-lingual root is oval in cross-section, more robust than the two others. On its internal surface there is a groove, which suggests that it developed through the fusion of two roots.

During ontogenesis the pattern of the grinding surface does not change much. The breadth of this surface is greater in old than in young teeth and the anterior border of the crown becomes smoother.

M³ small, its crown low, vertically situated. The pattern of the grinding surface is very complicated, particularly in adult specimens. In very young teeth the grinding surface is composed of two triangles and of the anterior and posterior loop. The anteroloph weakly developed and completely confluent with the paracone. The metacone originally well separated. Originally there are two re-entrants on each side of the tooth. Later, on the antero-internal and the postero-external re-entrant angles close, forming two enamel islands. M³ has three well developed roots. The posterior root is largest, the two anterior ones small, with a tendency to fusion. However, in the studied material the tops of the anterior roots always remain free.

During ontogenesis the pattern of the grinding surface changes conspicuously. With the wear of one third of the original height of the crown the top of the postero-external re-entrant closes and forms an island. This large, oval island persists over a long period, nearly until the crown is quite worn down. The anterior island develops slightly later than the posterior one. It is formed by the closing of the end of the antero-internal re-reentrant angle. This anterior island is of short-duration and disappears when two-thirds of the original height of the crown is worn away. In our material a great variability in the pattern of the isolation of the islands can be seen, particularly of the posterior one. Sometimes
this island becomes closed very late, when two-thirds of the original height of the crown are already worn away, and when the anterior island has disappeared. Sometimes both islands close at the same time. In all specimens, however, the posterior island is larger and persists longer.

DISCUSSION

The material from Antipovka and Chugunovka shows no significant differences when compared with the typical series of *Prosomys insuliferus* from Podlesice, either in morphology, or in dimensions, and may be included in this species. Also the teeth of "*Promimomys insuliferus*" described by Michaux (1971, 1976) from Vendargues and from Canterrane in France have no characters pointing to a specific difference from the material from Poland and U.S.S.R. It is to be noted, that in Vendargies there were juvenile teeth present, which are absent from our collections.

For the determination of the systematic position of our materials it is necessary to discuss the genus *Promimomys* Kretzoi 1955, in which they were included by the majority of authors. This genus was set up by Kretzoi for the species

![Diagram](image-url)

Figs. 52—53. Comparison of the occlusal view of m_1, of the holotype of *Promimomys cor* from Csarnóta (after Kretzoi 1955) (Fig. 52) with m_1 of a senile specimen of *Mimomys gracilis* from Węże, specimen MP/183/21 (Fig. 53)

Promimomys cor Kretzoi 1955, which was specified as its *typus generis*. *P. cor* is known from a unique specimen (small fragment of the mandible with m_1) which was found at the beginning of excavations in Csarnóta in Hungary on the surface of sediments accumulated during earlier diggings. The species was never found again and there is no material known besides the holotype. During later excavations in Csarnóta, executed after the description of *P. cor*, Kretzoi (1959, 1962) found in older layers a new, primitive form of the genus *Mimomys* F. Major 1902, named by him *Cseria gracilis* Kretzoi 1959. The unique spec-

2 — Acta Zoologica Cracoviensia XXIII/3
imen of *Promimomys cor* seems to be a senile specimen of *Cseria gracilis*. This is evident from the very low crown of m₃ and from the similarity of the morphology and dimensions *P. cor* to old specimens of *Cseria gracilis* e. g. from the locality of Węże in Poland (Fig. 52—53). This would make *Cseria gracilis* a junior synonym of *Promimomys cor* and the generic name *Cseria* KRETZORI 1959 (in general opinion a synonym of *Mimomys* or a valid name for its primitive subgenus) a junior synonym of *Promimomys*. If, however, the holotype of *Promimomys cor* is really a senile specimen, it is more advisable to put this name (and thus the generic name *Promimomys*) among the forms incertae sedis. The specific determination of the senile specimen of rooted *Arvicolidae* is uncertain, and the possibility that the holotype of *Promimomys cor* belongs to another small species of *Mimomys* cannot be excluded.

KRETZORI (1955) also included in the genus *Promimomys* another species, *Mimomys moldavicus* KORMOS 1932. The material of this form was collected by SIMIONESCU in Malușteni in Roumania and first described by him (SIMIONESCU 1930) under the name *Arvicoa plioaeonicus* MAJOR. SIMIONESCU (1930, p. 19—20, Figs. 26—28, Pl. III, Fig. 5) describes and illustrates two specimens: a mandible with m₁—m₂ (Fig. 26) and another one with m₁—m₃ (Figs. 27—28). They belong probably to two different species. The description and illustration of teeth represented in Fig. 26 are inadequate for exact determination. The second specimen, presented in Figs. 27—28, was later studied and described by KORMOS (1932) and is the holotype of *Mimomys moldavicus*. The crowns of the molars in it are very low, and, as already stated by KORMOS (1932), the specimen must be ontogenetically old. It is worth mentioning, that the older teeth of rooted *Arvicolidae* are more strongly fixed in the alveoli than the younger ones. That is why during earlier studies, when no washing and screening of sediments was used, mandibles with complete tooth-rows of senile molars were disproportionately numerous. *Mimomys moldavicus* has a robust mandible with short diastema, enamel fields strongly confluent, no cement in re-entrant angles and m₁ with a trace of an enamel island. Its dimensions are larger than those of *Prosmomys insuliferus*. The exact determination of systematic position of *Mimomys moldavicus* is difficult, as stated already by KORMOS (1932).

In 1965 TOPACHEVSKY described from Kuchurgan in the Odessa region a mandible with a senile m₁ which, according to him, belongs to *Promimomys moldavicus*. M₁ of this specimen is strongly worn, its enamel is, however, rather thin and there is no trace of an enamel island on it. The anterior loop is slightly different from *M. moldavicus* from Malușteni and in form approaches *Promimomys cor*. According to TOPACHEVSKY (1965) *P. cor* is a synonym of *P. moldavicus* and he erroneously determines *P. moldavicus* as typus generis of the genus *Promimomys*.

Whatever the systematic position of specimens from Malușteni and Kuchurgan (and this can be determined only when more material is available), it is of no significance on references to the validity of the genus *Promimomys*, because *P. cor* was explicitly determined by KRETZORI (1955) as its typus generis.

It is therefore clear, that the generic name *Promimomys* KRETZORI 1955 cannot
be used for the material from Podlesice, because the typical species of this genus is in all probability based on a senile specimen of a different systematic position. It should be remembered that *P. cor* was found in geologically much younger sediments than *Prosomys insuliferus*, in association with well differentiated typical *Arvicolidae*.

Table IV

Length of m_1 in different forms of *Prosomys* and *Promimomys* (in mm)

<table>
<thead>
<tr>
<th>Species</th>
<th>Locality</th>
<th>Author</th>
<th>n</th>
<th>min</th>
<th>m</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosomys insuliferus</td>
<td>Podlesice</td>
<td></td>
<td>15</td>
<td>1.91</td>
<td>2.43</td>
<td>2.65</td>
</tr>
<tr>
<td></td>
<td>Antipovka</td>
<td></td>
<td>5</td>
<td>2.25</td>
<td>2.37</td>
<td>2.55</td>
</tr>
<tr>
<td></td>
<td>Chugunovka</td>
<td></td>
<td>5</td>
<td>2.2</td>
<td>2.35</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Vendargues</td>
<td>Michaux 1971</td>
<td>4</td>
<td>2.38</td>
<td>2.48</td>
<td>2.82</td>
</tr>
<tr>
<td>P. minus</td>
<td></td>
<td>Shotwell 1956</td>
<td>1</td>
<td>1.9</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repenning 1968</td>
<td>49</td>
<td>2.14</td>
<td>2.5</td>
<td>2.97</td>
</tr>
<tr>
<td>Promimomys microdon</td>
<td>Osztramos 9</td>
<td>Janossy 1974</td>
<td>1</td>
<td>1.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promimomys cor</td>
<td>Csarnota</td>
<td>Kretzoi 1955</td>
<td>1</td>
<td>2.9</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Promimomys moldavicus</td>
<td>Malusteni</td>
<td>Kormos 1932</td>
<td>1</td>
<td>2.7</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kuchurgan</td>
<td>Topachovsky</td>
<td>1</td>
<td>2.7</td>
<td>2.7</td>
<td></td>
</tr>
</tbody>
</table>

Kretzoi (1955), emphasizing the differences between the specimen from Csarnota and those from Podlesice, created the generic name *Polonomys* for the latter. In 1968 Repenning had the opportunity to compare directly the specimens from Podlesice with a rich material of *Prosomys minus* Shotwell 1956, known from two Hemphillian localities in Oregon, U.S.A. Thanks to the courtesy of Dr. C. Repenning the authors were also able to compare the specimens of *P. minus* from Christmas Valley in Oregon with their material. Repenning (1968) found no generic differences between these materials and included both species in the genus *Promimomys*. As the name *Promimomys*, as stated above, cannot be used here, the generic name *Prosomys* Shotwell 1956 is the oldest available (*Polonomys* was described by Kretzoi in 1959 and is therefore its younger synonym) *.

The mandible of *Prosomys minus* is, like the mandible of *P. insuliferus*, robust, with short diastema, but with typical characteristics of *Arvicolidae*. In both forms the height of the molar-crown is similar, the enamel in not differentiated, thick, without dentine tracks, cement is not present in re-entrant angles. Molars are rooted, the upper ones have three roots each, with identical localization and shape. There is an island on m_1, but in *P. minus* it disappears.

*One of the authors of the present paper (Agadjanian) is of the opinion that the differences between *Prosomys* and *Polonomys* are of generic order and prefers to use the designation *Polonomys insuliferus* for the European species.*
earlier than in *P. insuliferus*. The proportions of particular teeth and the morphology of the grinding surface are similar in both species. In some specimens of m$_2$ in *P. minus* the hypoconal complex is isolated from the anterior part of the crown (cf. SCHENNING 1968, Fig. 9, no 7a), which was never stated in *P. insuliferus*. According to the description and in available specimens of *P. minus* the anterior re-entrant angle of m$_3$ does not form an island, which develops as a rule in *P. insuliferus*. However, in both forms the posterior island on m$_3$ is large and long-lasting. It is hard to believe that so many common characters developed independently in these two species. *Prosomys minus* and *P. insuliferus*, though specifically different, therefore undoubtedly belong to one genus.

JÁNOSSY (1974) described from the Middle Pliocene fauna of Osstramos Loc. 9 in Northern Hungary a new species, *Promimomys microodon* JÁNOSSY 1974. Only one damaged m$_1$ with a relatively high crown is known. The anterior loop, without enamel island, is slightly narrower than in *Prosomys insuliferus*. The dimensions of the tooth are also slightly smaller than those in *P. insuliferus*. *Promimomys microodon* is probably also a member of the genus *Prosomys*, but insufficient material makes the determination of its systematic position difficult. The faunal list of Osstramos Loc. 9 is similar to that of Podlesice but, according to JÁNOSSY (1974) it already includes a typical representative of the genus *Mimomys*, *M. silasensis* JÁNOSSY 1974.

From a fossil locality of similar age, Osstramos Loc. 1, two upper teeth of “*Polomomys* sp.” were described.

In Chirgis-Nur in Mongolia DEVLATKIN and LISKUN (1966) note the presence of “*Promimomys (?)* sp.”, but any description is lacking. From Ostrava Sopka in Siberia “*Promimomys aut Villanyia*” was mentioned by VANGENGEIM and ZAZHIGIN (1974). In another part of their paper the authors write about “*Promimomys (Oseria) gracilis*”, which would suggest that they recognize Promimomys as a valid name for the forms generally included in the subgenus *Oseria*.

“*Promimomys*” without specific determination and description was mentioned from the Pliocene of Turkey: from Çalta (GINSBURG, HEINTZ, SEN 1974, SEN, HEINTZ, GINSBURG 1974) and from Dinar-Akeaköy (TÖBIEN 1973, 1974, BECKER-PLATEN et al. 1975). The authors of the present paper were able, thanks to the courtesy of Prof. Dr. H. TÖBIEN, to study the material from Akeaköy. It represents undoubtedly a new species, different and maybe slightly more advanced than *Prosomys insuliferus*, but belonging to the same genus.

At the beginning of the Pliocene there appear among Orictidae many forms with hypsodont teeth and a tendency to the formation of enamel loops on the grinding surface of the molars. Among these forms *Baranomys* KORMOS 1933 and *Microtodon MILLER 1927* approach the genus *Prosomys* in their molar pattern. Of two better known species of *Baranomys* (maybe representing two genera), *B. kowalskii* KRETZOR 1962, which is known form the fauna of Podlesice, has a very short and simple m$_3$ and therefore is very different from *Prosomys insuliferus*. *B. loczyi* KORMOS 1933 from Late Pliocene and Earliest Pleistocene is more similar in its tooth pattern to *Prosomys*. Both forms of *Baranomys*, how-
ever, have mandibles without characteristics typical of Arvicolidae (Repenning 1968) and are of very small dimensions. Finally, Microtodon atavus (Schlosser 1924) from Ertemte in China (Schäffler 1934) is also small (L m1 1.9 mm) and its m3 is similar to that of Baranomys kowalskii. For the determination of the systematic position of Microtodon further studies, especially concerning its mandibular structure, are essential.

In 1965 Kretzoi described two isolated molars discovered in Upper Pannonian during a boring in Jaszladany in Hungary and created for them a new species and genus Pannonicola brevidens Kretzoi 1965. According to Kretzoi this is the oldest representative of Arvicolidae. The teeth are deeply worn and evidently senile. If the teeth, as determined by Kretzoi, really represent m2 and m3, than their pattern is very different from that of Promimomys. The opinion expressed by Kretzoi (1955, 1965) that the most primitive Arvicolidae (Promimomys and Pannonicola) were brachydont does not seem justified. Arvicolids developed from Cricetids through the adaptation to grinding of large amounts of the green parts of plants, which are hard and of low nutritive value. Therefore, already the Cricetids which were the ancestors of oldest Arvicolids were relatively hypsodont, as were the first forms of Arvicolids.

It is evident that the genus Prosomys existed as early as in the Lower and Middle Pliocene, before the appearance of diversified lines of true Arvicolidae (Mimomys, Dolomys, Pliomys etc.) over extensive territories of Europe, Asia Minor (and probably also central and northern Asia) as well as western part of North America. Its mandibular structure and molar pattern were typically arvicoline, but at the same time it had many primitive characteristics. Its origin and its role in the development of younger groups of Arvicolidae are not known. Opinions on these problems concern the genus Promimomys, but were based mainly on the material of Prosomys insuliferus, this being the best known. Repenning (1968) was of the opinion that it may be ancestral to many evolutionary lines of Arvicolidae. According to Chaline (1975) Promimomys (= Prosomys) is a direct ancestor of the genera Dolomys Nehring 1898, Pliomys Méhely 1914 and Mimomys F. Major 1902. In Kretzoi's opinion (1969) Polonomys, Prosomys and Promimomys are distinct genera and represent successive stages in the development of primitive Arvicolidae. Mein (1975) described from Upper Vallesien in France a new species of Cricetidae, Rotundomys bressanus Mein 1975 which has a tendency to the formation of enamel loops and to hypsodonty. It is Mein's opinion that this form may be ancestral to Promimomys (= Prosomys). As usually with transient forms it is a matter of controversy whether they belong to an ancestral or a descendant group. The authors of this paper are of the opinion that Prosomys, with its numerous arvicolid characteristics, is best placed in the family Arvicolidae.

Department of Geography
Moscow State University
Moscow W-234, Leninskie Gory
U.S.S.R.

Institute of Systematic
and Experimental Zoology
Polish Academy of Sciences
31-016 Kraków, Sławkowska 17, Poland
REFERENCES

BECKER-PLATEN J. D., BENDA L., STAESCHIE U., TOBIEN H., STEFFENS P. 1975. Die Gliederung des jüngeren Känozoikums der Türkei auf Grund von Vertebraten. Regional Comm. on Medi-

Berggren W. A., Couvreur J. A. von, 1974. The Late Neogene. Elsevier, Amsterdam-Oxford-
New York, 126 pp.

Chaline J. 1975. Évolution et rapports phylétiques des campagnols (Arvicolidae: Rodentia)
apparentés à Dolomys et Pliomys dans l’hémisphère nord. C. R. Acad. Sc., Paris, s. D, 281:
33—36.

Deviatkin E. W., Liskun I. G. 1966. Девяткин Е. В., Лискин И. Г. 1966. К стратиграфии
кинзовийских отложений Западной Монголии. Бюлл. Моск. Общ. Ист. Прир., с. геол.,
Москва; 6: 137—138.

Ginsburg L., Heinrz E., Sen S. 1974. Le gisement pliocène à Mammifères de Calta (Ankara,

Jánossy D. 1972. Middle Pliocene microvertebrate fauna from the Osztramos Loc. 1. (Northern

Jánossy D. 1974. New „Middle Pliocene“ microvertebrate fauna from Northern Hungary
(Osztramos Loc. 9). Fragment. min. et pal., Budapest, 5: 17—27.

193—200.

Kowalski K. 1951. Breacka newtonera w Podlesicach koło Kroczycy w pow. olkuskim (La

Kowalski K. 1956. Insectivores, bats and rodents from the Early Pliocene bone breccia of

Kowalski K. 1958. An Early Pleistocene fauna of small mammals from the Kadzielnia Hill in

Kowalski K. 1959. Baranogale helbingi Kormós and other Mustelidae from the bone breccia

Krákov 7 (3): 39—51.

Kowalski K. 1964. Paleoeokologia ssaków plicocen i wczesnego plejstocenu Polski (Paleoeeology
of mammals from the Pliocene and Early Pleistocene of Poland). Acta aeriol., Biało-
wieża, 8 (4): 73—88.

Krasnennkov R. V., Agadjanian A. K. 1975. Красненков Р. В., Агаджанян А. К. 1975. Ниж-
ний плеистоцена Среднего Дона. Бюлл. комиссии по изучению четвертичного периода, Мо-
сква, 44: 69—88.

Krasnennkov R. V., Agadjanian A. K. 1976. Красненков Р. В., Агаджанян А. К. 1976. Пер-
вая находка руссилонских (кучурганских) млекопитающих на территории Европей-

ненков Р. В., Александрова Л. П., Щерникова Л. А., Чипальга А. Л. 1970. Новые паleo-
онтологические охарактеризованные разрезы антропогенных отложений в бассейне Среднего
Дона. Материалы по геологии и полезным ископаемым Центральных районов Европейской части СССР, Москва, 6: 276—285.
СИМОНЕСКИ И. 1930. Vertebratele plicuc de la Mălăşténii (Covruţi) (Les vertébrés pliocènes de Mălăşténii (Romanie)). Publ. Fond. V. Adamecu, Bucureşti, 9 (49): 1—69.
STRESZCZENIE

Prosomys insuliferus ma zęby trzonowe mezodontyczne, z grubą i słabo zróżnicowaną warstwą szkliwa, nie wykazującą przerw. W ząbkach tych zębów brak cementu. Dolne zęby trzonowe mają po dwa, gorne po trzy korzenie. M₁ ma jedną, m₃ zwykle dwie wysepki szkliwa. Morfologia żuchwy jest typowa dla Arvicolidae. Wymiary podano w tabelach I—III.

Materiał opisany z Podlesic i innych stanowisk nie wykazuje różnic rodzajowych w stosunku do gatunku *Promimomys mimus* Shotwell 1956 z Oregonu, chociaż zaznaczają się między nimi różnice gatunkowe. Ze względu na to forma europejska powinna nosić nazwę *Prosomys insuliferus* (Kowalski 1958). Do tego samego rodzaju należą także materiały opisane z Turcji pod nazwą "*Promimomys sp."."

Rodzaj *Prosomys* Shotwell 1956 był szeroko rozmieszczony w środkowym i zapewne dolnym pliocenie Europy, Azji i zachodniej części Ameryki Północnej. Przedstawia on najdawniejszą dobrze poznaną formę Arvicolidae, noszącą cechy pośrednie między typowymi rodzajami tej rodziny i wyspecjalizowanymi w podobnym jak Arvicolidae kierunku przedstawicielami Cricetidae.

РЕЗЮМЕ

В 1958 г. был описан новый вид примитивного арвиколида, *Promimomys insuliferus* Kowalski. Эта форма была позднее открыта в плиоценовых фаунах Вен-
держев Контерран во Франции (Мише 1971, 1976). В последние годы этот грызун был также найден в местонахождениях Антиповка и Чугуновка в Воронежской области Европейской части СССР. Авторы описывают материал из Подлесца, а также из Антиповки и Чугуновки. Приведены фаунистические списки упомянутых местонахождений (стр. 30).

Материал Подлесца, Антиповки и Чугуновки также как Вендеркё не показывает каких-либо видовых различий и может быть отнесен к одному виду. Авторы полагают, что род *Promimomys Kretzoi 1955* следует считать как *genus incertae sedis*. Как *typus generis* этого рода был выбран Кретцоем *Promimomys cor Kretzoi 1955* из Чарноена Венгрии. Голотип и одновременно единственный известный экземпляр этого вида представляет вероятнее всего старый *M₁* одного из примитивных видов рода *Mimomys Forsythe Majer 1902.*

Материал, описанный из Подлесца и других местонахождений не имеет родовых отличий от вида *Prosomys mimus Shorthwell 1956* из Орегоны, хотя имеет отличия видового ранга. Поэтому европейская форма должна называться *Prosomys insuliferus* (Kowalski 1958). К этому роду относится также материал, который был описан из Турции под именем „*Promimomys sp.“.*

Род *Prosomys Shothwell 1956* был широко распространен в среднем и вероятно в нижнем плиоцене Европы, Азии и западной части Северной Америки. Он представляет древнейшую хорошо изученную форму арвиколид, которая занимает промежуточное положение между родами этого семейства и специализированными полевковидными хомяками.